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FOREWORD

The subject of this book is pﬁysiéal experiments in which the detection
of an effect can be reduced to the registry of a force or moment of force.
Despite the fact that classical physics began precisely with such experiments,
they are still being made. The reasons for formulating experiments are of an
extremely basic nature (for example, the problem of detecting gravitational

radiation, the search for quarks, etc.).

In the experiments carried out today or made during recent years, the
attained sensitivity is extremely high and may astonish the experimental
physicist who is not working in this field. On the other hand, the sensi-
tivity in these experiments is increasing with each passing yéar. About 50
years ago Millikan discovered a single "excess' electron (or its absence) in
a droplet in which the excess electron was accompanied by 1013 nucleons; now
the same thing can be done 'against a background" of 1018 nucleons. P. N.
Lebedev, at approximately the same time, measured the pressure of a light flux
with an intensity of about 1 W; now it is possible to measure the light
pressure from fluxes of tens of microwatts. During 1959-1963 Dicke, in
repeating the experiments of Eotvos in checking the equivalence principle,
succeeded in increasing the sensitivity by three orders of magnitude. Evi-
dently, in the future we can expect a further increase in sensitivity. The
author has endeavored to describe the conditions (methodological and
theoretical) necessary for increasing sensitivity, and also indicating the
limits of resolution which are theoretically attainable. It has been found
that these limits are to a certain extent similar to the recently discovered

macroscopic quantum effects.

The book also includes descriptions of some recently pérformed interest-
ing experiments involving the solution of fundamental physical probléms and
estimates of the limiting resolution in individual experiments discussed in
the literature. The selection of material in the second part of the book was
governed only by the importance of the physical problems which can be experi-
mentally solved. Naturally, this selection was determined by the author's

subjective point of view. Accordingly, the examples and illustrations in the
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second half of the book do not exhaust all the possible experiments in which

it is important to detect small mechanical forces or moments of force.

The author takes this opportunity to express his appreciation for
valuable comments made by Yu. L. Klimontovich, V. N. Rudenko and R. V.

Khokhlov during the reading of the manuscript.

iv



TABLE OF CONTENTS

Foreword
Introduction
Chapter I - Detection of Small Forces Acting on a Mechanical
Oscillator
§ 1, Oscillatory System with a Large Time Constant Experiencing
The Effect of a Fluctuating Force. Methods for Detecting
a Small Regular Force
§ 2. Dynamic Effect of Instrument Registering Small Oscillations
on a Mechanical Oscillator
§ 3. Classical and Quantum Fluctuation Effect of a Measuring
Instrument on a Mechanical Oscillator
§ 4, Optimum Strategy for Measurements in Experiments with Test
Bodies; Potential Resolution
Chapter II - Fundamental Experiments with Test Bodies
§ 5. Checking the Equivalence Principle
§ 6. Quantum Macroscopic Effects
§ 7. Search for Elementary Particles with a Fractional Electric
Charge
Chapter III - Prospects for Carrying out Gravitational and Nuclear
Experiments with Test Bodies
§ 8. Problem of Detecting Gravitational Radiation
§ 9. Gravitational Relativistic Effects in the Nonwave Zone
§10. Experiments with Test Bodies and Search for New Properties
of Elementary Particles
Appendix
§11. Methods for Measuring Small Mechanical Oscillations
§12. Mechanical Fluctuations in a Space Laboratory
References

Page

iii

21

33

47
53
53
62

66

74
75
56

99
104
104
115
120



NASA TT F-672

PHYSICAL EXPERIMENTS WITH TEST BODIES

B. V. Braginskiy

ABSTRACT. This monograph is an examination of physical
experiments in which the detection of an effect essentially
involves the detection of a small force or moment of force
acting on a macroscopic body (experiments with test bodies);
the author analyzes the threshold response of a mechanical
oscillator to exposure to a regular external force. The
effects of light friction and radiometric oscjllatory
instability are examined. The optimum strateqy for
measuring a small regular force acting on a mechanical
oscillator is described. Estimates of the minimum detect-
able magnetic field strengths, electric charge, acceleration,
etc., are given. Experiments for checking the equivalence
principle, for searching for elementary particles with a
fractional electric charge, and for detecting quantum
macroscopic effects are described. The prospects for
detecting gravitational radiation and the possibilities

of carrying out relativistic gravitational experiments in
the nonwave zone are evaluated. The limiting attainable
responses in experiments with test bodies in the search for
relict guarks with a whole electric charge and electric
dipole moments of elementary particles are examined.

Methods are described for measurijng small mechanical dis-
placements and mechanical fluctuations in a space laboratory.

"Until we know why an elementary electric charge is
identical in all processes, interest in fundamental problems

in physics will continue unabated.' -- W. Weisskopf.

"Indeed, if something is unknown it is almost as if it does

not exist.' -- Apuleius, Metamorphoses, Book 10.

INTRODUCTION

The great number of experiments in which discovery of a physical effect

has been reduced to registering a small force or moment of force acting on a

*Numbers in the margin indicate pagination in the foreign text.




macroscopic body have yielded fundamental physical information. For example,
such experiments include those performed by Einstein and de Haas, Millikan,
Eotvos, Dicke (checking the equivalence principle), Shubnikov and Lazarev
(paramagnetism of nuclei), as well as a whole series of experiments proposed
and in part carried out at the present time; mechanical experiments for the
detection of parity nonconservation, search for rare particles with a
fractional electric charge, for detecting gravitational radiation, etc.
Relatively recently the effect of quantizing of a magnetic flux in super-
conducting cavities was discovered (quantum macroscopic effect). The dis-
covery of this effect essentially involved the detection of a small mechanical

moment of force.

With repetition of such experiments or carrying out of new experiments
(it is convenient to refer to them as experiments with test bodies), the
greatest interest is in the limiting attainable resolution. The development
of modern experimental instrumentation has now made possible a substantial
(by several orders of magnitude in comparison with already executed experi-
ments) decrease in the friction connecting a test body to the laboratory, and /10
accordingly, decrease the fluxuation forces acting on a test body. Evidently,
a major qualitative advance in reducing this fluctuation effect must be
expected in formulating experiments with test bodies in space (in the presence
of weightlessness, an intense vacuum, and in the absence of seismic inter-
ference). A considerable part of this monograph is devoted to an examination
of the limiting resolution in experiments with test bodies. Emphasis is

devoted to the fluctuation effects which theoretically cannot be eliminated.

In certain classical studies the minimum force applied to a mechanical
oscillator, detectable against the background of thermal fluctuations, was
usually computed for the case when the period of the oscillations Ty was approxi-
mately equal to the relaxation time t* (critical damping). The well-known
expressions derived under this condition were clearly checked in the classical
experiments made by Ising, Cernik, and others. These expressions have been
incorporated into textbooks as an illustrative example of the limiting
response of galvanometers, electrometers, etc. It follows from the condition

0 ~ t* that in order to increase sensitivity (response) in experiments with



test bodies, the only methods are an increase in 1, and 7* and a repetition

0
of the number of measurements. On the other hand, an increase in t* means a
decrease in the friction coefficient H, being a source of the fluctuation
force, whereas the period Ty in general, is unrelated to the sources of

fluctuation forces.

Thus, it is clear from such simple qualitative considerations that
increases in sensitivity can be achieved only by increasing t*. In this way
the experimenter will be concerned with a quasiconservative system; if the
test body is rigidly connected to the laboratory, for such an oscillator

TO/T* << 1.

In all the experiments mentioned above, as well as in most of those
discussed in the literature, it is usually assumed that the force F(t), whose
effect on a test body must be detected, can be coded. This means that in
formulating experiments there is no need to limit oneself to quasistatic
measurements, for which, as is well known, it is recommended that = T* be /11
selected. Preliminary information on the F (1) form requires solution of the
problem of the optimum methods for detecting the response of a mechanical
system to the F (tv) effect. Since a decrease in the thermal fluctuation
effect requires an increase in the 1* value, with a sufficiently high experi-
mental skill, the time expended on measurements Tmeas and T, the time of the
F (1) effect, should be substantially less than the relaxation time t*. In
other words, the optimum detection of a response to F (1) should in general

be in a nonequilibrium system.

The vigorous development of the theory of discrimination of a signal from
noise during the 1940's and 1950's was for the most part associated with an
optimizing of operations performed in a receiver on the sum (signal plus
noise) with a statistically effective use of preliminary information on the
signal. This theory was developed due to the needs for developing distant
communications and radar, and therefore the relaxation time in the receiver
converting the sum (signal plus noise) was considered small, so that the

processes occurring in it could be considered close to equilibrium. Evidently,



no detailed analysis was made for optimum detection for cases Tmeas/T* << 1

and T/T* << 1.

The literature contains a relatively large number of examinations of the
possibility of observing physical effects involving detection of the force
F (t) (or the moments of force) acting upon a mechanical oscillator. In many
cases, in such a study the threshold value of the detectable parameter

[F (T)]min was determined from the equilibrium value of oscillator energy

[F ('t)]min‘z /KZng .

Obviously, such an estimate is inadmissible, since such an important

parameter as the ratio between the times 1 (or t) and the relaxation

meas
time t* was not included.

In summarizing the preliminary results of the qualitative considerations
presented above, it can be concluded that an increase in the t* value,
dependent essentially only on the ''culture' of the experiment, should, in the
case of thermal fluctuations, result in a decrease in the threshold of
detectable F (1) effects on a test body, assuming that these effects are
limited in time. Unquestionably, a rigorous examination of the problem of
detection of a weak effect on a mechanical oscillator or free body, in the
case of large t*, presents no difficulties, at least in the classical approxi-
mation. This problem can be solved, for example, using known expressions
derived by Chandrasekhar for the Langevin equation [1]. However, in the

studies by Chandrasekhar the case T/t* << 1 was not analyzed in detail.

A decrease in the T/t* value should have the following result: the
detectable quantities of energy AW imparted to a test body or removed from it
by the force F (t) should become substantially less than the equilibrium
energy value kT (for the selected degree of freedom). This means that there
is a limit of applicablity of the classical solution of this problem for some
quite small T/1*. In addition, in the classical examination no allowance is
usually made for the fluctuation effect of the device registering small dis-
placements of a test body. In the case of a quite small 1/t* this influence
is decisive. In terrestrial laboratories, torsion balances on thin quartz

filaments make it possible to obtain t* = 106 sec. In centrifuges on magnetic



suspensions with a servosystem, as well as in gyroscopes with electrostatic
servo-suspensions with a vacuum of about 10~% mm Hg the t* value attains about
10° sec (Beams, Nordoik). Thus, even under terrestrial conditions it is

possible to obtain a quite small T/t* ratio.

The first chapter is devoted to an examination of a number of problems
involved in detecting a small force acting on a test body. This chapter
includes the classical examination of detecting a small regular (limited in
time and of a known form) force acting on a mechanical oscillator (§ 1).

This section also discusses the methods for detecting the response to a force
when T/t* << 1 against a background of fluctuations, and gives illustrative

examples.

Analysis of the dynamic effect of radio engineering and optical indi-
cators on a mechanical oscillator is presented in § 2. This section examines

the effect exerted on the period t, and the time t* by the device used in

registering small displacements; ig describes the appearance of oscillatory
instability characteristic for a definite type of indicators, and gives an
analysis of the dissipative influence of optical radiation on mechanical
motion, which is comparable to the friction introduced by a rarified gas in a

deep vacuum.

Section § 3 discusses the situation, most important with respect to
limiting response, when the t* value is so great that the fluctuation effect
on the test body by the small displacement indicator' determines the limiting
attainable response. Analysis of this case shows that there is an optimum
method for selecting the indicator parameters so that the minimum detectable
force (or moment of force) is not dependent on the indicator properties. The
analytical expressions derived here make it possible to compare the signifi-
cance for limiting sensitivity of classical thermal fluctuations (with the
smallness of T/t* taken into account) and quantum fluctuations in the indi-

cator.

Section 4 is devoted to a discussion of the optimum strategy in experi-
ments with test bodies, comparison of the well-known classical expressions

and the derived analytical expressions for optimum indicators. This section



also gives numerical estimates for the attainable response (electrometers,

accelerometers, magnetometers, etc.).

The second chapter describes the methods employed in experiments per-

formed during recent years and having fundamental importance for basic

physical concepts.

Section 5 describes an experiment for checking the equivalence principle
{Dicke); section 6 describes an experiment in which quantizing of a magnetic
flux in superconductors was discovered (Fairbank, Doll, Nibauer and Deaver);
section 7 describes experiments for detecting rare particles with a fractional
electric charge (quarks). In each of the sections there is a comparison of
the resulting resolution with the theoretically attainable response on the

basis of the "optimum strategy" discussed in the first chapter.

The third chapter is devoted to the possibilities of detecting gravi-
tational radiation (§ 8) and an analysis of the possibilities of carrying out
some relativistic gravitational experiments in the nonwave zone (§ 9). In
section 8 there is also a short review of present~day concepts concerning
sources of gravitational radiation of extraterrestrial origin. Section 10
discusses experiments in which it is possible to detect new properties of

elementary particles.

The Appendix contains a brief review of methods for detecting small
mechanical displacements (§ 11), as well as some information based on measure-
ments carried out recently for determining the level of quasiseismic

fluctuations which will be observed for orbital space laboratories (§ 12).
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CHAPTER 1 /15

DETECTION OF SMALL FORCES ACTING ON A MECHANICAL OSCILLATOR

§ 1. Oscillatory System With a Large Time Constant Experiencing the Effect
of a Fluctuating Force. Methods for Detecting a Small Regular Force.

We will examine a very simple model of an experiment with a test body.
Visualize that it is necessary to detect the effect of a force F (t) on a
mass m which is connected to a laboratory by the rigidity X, having a
dissipation corresponding to the friction coefficient . We will assume that
preliminary information is available concerning the form of the F (1) force
(regular effect). The following cases are most frequently encountered: F (1)
has the form of a sinusoidal train or F (t) is a single impulse., Henceforth
we will be concerned only with the level of attainable sensitivity (response)
in detecting regular F (1) effects on such an oscillator, and we will not
be concerned with quasistatic measurements in which the response level is
determined by drift characteristics (temperature stability, stability of the

rigidity element, etc.);

We will assume that in addition to F (1), the oscillator mass is acted
upon by a stationary fluctuation force Efz' In the special case of thermal
fluctuations the spectral density FfZ is equal to (Ffz)i = 4xTH, where k is
the Boltzmann constant and 7 is temperature. Noise of nonthermal origin can /16
be avoided by using a number of technical methods (antiseismic platforms,
acoustic shielding, etc.). However, in theory the thermal fluctuations of a
mechanical oscillator cannot be eliminated. This circumstance is usually
emphasized in determining the limiting response of galvanometers, electro-
scopes, etc. However, in this case the level of attainable response is
related to the rather special case of measurements when the time expénded on
measurements is about equal to the time of oscillator damping (for example,
see [2, 3]). 1If one does not limit himself to this case, as will be seen from
the text which follows, the level of attainable response is substantially
higher and the analytical expressions determining the minimum detectable F (t)

value will be different.



If it. were possible to eliminate nonthermal fluctuation effects on the mass
m, it would be’possible to assert immediately that the approximate condition
for detecting F (t) has the form

F (1) VInTITAf, (1.1)

where Af is the frequency band within which the greater part of the F (t)
spectrum falls. It can be seen from this condition that in order to increase
the threshold response it is necessary to decrease T and H. The Af value is
determined by the F (1) form. Condition (1.1) is approximate since the method

for measuring the oscillator response to F (1) was not indicated.

We will assume that we have an ideal instrument registering mechanical
movements (as small as desired) under the influence of F (1) + FfZ and not
making any contribution to #fl' Such an assumption is possible within the
framework of the classical problem. Somewhat later (§ 3) we will examine the
fluctuation (classical and quantum) effect of such an indicator on an oscil-

lator and will examine the optimum measurement strategy.

The simplest method for detecting response to the F (1) effect is to
register the change in amplitude of oscillator oscillations. As already
mentioned in the Introduction, a decrease in H, necessary for increasing
response, has the following effect: the relaxation time t* = 2m/H is sub-
stantially greater than L the reasonable time which can be expended on /17
measurement, and than %, the time of the F (t) effect. Thus, when T/1t%<< 1
and TmeaS/T* << 1 the oscillator will behave as a system close to conserva-
tive, and the amplitude of its oscillations will be a slowly varying function
(for example, see [4, 5]):

1 381 (r)

a(t) - A ) sinfopr L9 (T)] 3??5§>-6;—-€——. (1.2)

In order to assert with some predetermined reliability that in addition
to the stationary fluctuation force Ffz.the mass m will be acted upon by the
force F (1) during some interval T, it is necessary to determine the limits

within which it is possible to change the amplitude of oscillator oscillations



R et vt e

under the influence of FfZ: [A(t) - A(O)]l_a. These limits are determined
only with the stipulated degree of probability (1 - o); the a value is
usually called the statistical error of the first kind. Thus, by finding
these limits (in mathematical statistics they are sometimes called quantiles

[6]), it will be possible to determine the threshold response for F ().

The expression for the probability density of an arbitrary distribution

of amplitude of oscillations 4 (t) at the time T has the form [5]

pLA ()4 (0)] =

A @ GAM (@Y [_ A2 (1) -;-(:.Alﬁﬂ] (1.3)
= Ta— (”’s‘i(’l_- &) )0“1’ EERT T N
where for our case

Gocr B9, g [TT())

The [4 (T) - 4 (0)]1_a value, in accordance with the definition of p[4 (1) ]|
A (0)] can be found by solving the equation

YD)
T—a \ pLA(R)[ A ()] dA (%), (1.4)

o
A0

We will examine two cases: 4 (0) = 0 and 4 (0) ™ o. In the first case

equation (1.4) has the simple form:

D pmd

=05

1—a=1——exp[~['—'1%], c:£<;;1, (1.5)

hence

[T == sl/—j—f- Y 2In(1/a). (1.6)



The [A (?)]l_a value does not vary greatly for initial values 4 (0) < ove,
and by using expression (1.6) it is possible, by stipulating o, to estimate
with the probability (1 - a) the limit of possible change in the amplitude of
oscillations [4 (T) - 4 (0)]1_Ol with time T. It can be seen from (1.6) that

this requires a knowledge of T, t* and o. In the case of thermal fluctuations

Ko? = «T.

Thus, if the oscillator has
the small initial amplitude
A (0) =0o0r A (0) < o/e) and with

the course of time T the amplitude

vf—“ of its oscillations exceeds the
Alz)| A(x+7) . . .
’ 4 I value (1.6), with the reliability
7 b G (1 - @) it will be possible to
assert that in addition to ?fl the
Figure 1 oscillator will be acted upon by
A

some additional force F(t) (Figure
1).

As can be seen from the above, we obtained only a threshold expression,
the ordinary expression for detection theory. In other words, except for
"'yes' or 'no'" nothing can be said concerning the additional effect F (1) if

A (7) insignificantly exceeds or does not exceed the limit [4 () - 4 (O)]l—a'

Thus, the [4 (1) - ACO)]laa value corresponds to the threshold response
when detecting the small parameter F (t). It is clear that in order to
obtain a relative accuracy of about 10%, for example, it is necessary that
during the time T the F (1) effect imparts to the oscillator an amplitude of
oscillations 4 (%) approximately 10 times greater than [4 (?) - A (0)]1_a.

We will now return to the situation when 4 (T) is close to the limiting
value. The interference of oscillations caused by F (1) ahd FfZ can have

the following effect: 4 (1) does not exceed [4 (T) - 4 (0)]1_a , and using the

criterion described above, it will be necessary to draw the incorrect

10



conclusion that F (1) = 0. In order to estimate the probability of such an
outcome it is necessary to introduce the statistical error of the second kind
B, the probability that on the assumption F (t) # 0 one will obtain the result
4 () <[4 (8) -4 O],

We will assume that the F (t) force, in the absence of FfZ’ can sway the
oscillator during the time T to the amplitude B. We will stipulate some value
¢t =B/[A (?) - A (0)]1-a and compute the B value. We will limit ourselves
here to the case ¢ # 1 and we will assume that the phase shift between the
oscillations caused by F (1) and FfZ is random. In addition, we will assume
that 4 (0) = 0. It is easy to demonstrate, taking into account the inter-

ference of oscillations caused by F (t) and FfZ’ that

n I eog g | i/[A\(.)]1 2 Is28inp
1]

B = i—g do .\ pld (T)[0]dA(7), (1.7)

P Icos @ V[A (‘r')l';' o b7 sin®

where sin ¢1 =1/z.

Replacing the notation
A,
i

la(%)]la =

and taking into account that ¢ = B/[4 (%)]1_a , we obtain /20

la (@]} o (—Ccosp— V1 —g‘r‘?’J

b sy

2c

o (1.8)
l[a (D)2, (—Leosg + VI —{¥sin’q) ]
Al ezt E TSR g,

e

— exl)[——

where, like above, ¢ = 27/T*.

The [a (%)]1_a value is related to the magnitude of the error of the
first kind o by expression (1.6). Using it, it is possible to express B as a

function of o and z:

11



B= -i—S {al—Lenso— Vigsinrel al—% cos o+ mfﬁ_]} de. (1.9)
@

1

WHen o = 0.05 and £ = 1.4 we have 8 = 0.117; wheri ¢ = 0.05 and ¢ = 2, the
B value is 0.605. '

Thus, using the boundary value (1. 6), the prbbabilify of not deteéting
the effect of the F (1) force, which in the absence of F fZ causes the ampli-
tude B = 2[4 (1)]1 , does mot exceed 0.5%. The g pardmeter does not sub-
stantially change if 4 (0) # 0, but does hot exceed ovc.

Now we will return to the case when A (0) and A(i) are not small in com-
parison with the o value. We will determine the limiting values [4 (%) -
A (0)]1 , when 4 (0)=~ o. Taking into account that ¢ = 2%/t* << 1, tHe
function Iy (x) in (1.3) can be réplaced by its asymptotic expression for

large Values of the atrgument

Io{z) = (2nzx)hex,

In this case the expression for the probability density of an arbitrary dis-

tribution of amplitudes (1.3) assumes the simple form:

~ . O ?‘
p[a(r)la(O)INI/ i(:())) Vlm oxp [——[—“(")Ta(j] (1.10)

where a (£) = 4 (7)/o, a (0) = 4 (0)/o.

Thus, when 4 (0) = o and with small 7T the normalized change in amplitude /21
[a (1) - a(0)] asymptotically conforms to a normal law with a dispersion
e = 2t/t*,
Accordingly, in order to find the limiting value [a (T) - a (0)]1—a’
which limits the possible changes in aq with time 7T with some probability of
error of the first kind o, it is possible to use the ordinary procedure for

a normal distribution.

o == ['1—-4(17(141 )y (1.11)

12
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where

Uy-x

dwulq):=—;%§§ S exv(—-%?)d&

ltl..a ==

le @) —a )],
Ve |

Stipulating o and using well-known tables for ¢ (ul-aj‘ it is possible to
obtain limiting values [4 (1) - 4 (0)]1_a. For example; when a = 0.05,
Uy g5 = 1.96. )

[A(%)~ A(0)]o.05 == 6 V c-1.96G;

in the general case

[A()— A0t a==0Ver, ,. (1.12)

It is interesting to compare the close functions [2 1n (l/oz)]l/2 and Uy ot
Table 1 gives the numerical values of these functions for several o values.
The table shows that the numerical values of these two functions differ insigni- /22
ficantly when 0.05 < a < 0.0001. Thus, the limiting value fbi the o
change in amplitude is not critical for the initial value of the amplitude

of oscillations.

TABLE 1
—— s 7 S

o [2 In (1/a)] Uy g
0.05 2.45 1.96
0.01 3.04 2.58
0.005 3.25 2.81
0.001 3.72 3.29
0.0005 3.90 3.48
0.0001 4.29 3.88

13



The magnitude of the error of the second kind B for the case 4 = o can

be computed as is usually done in the case of a normal distribution (for
example, see [6]).

As can be seen from expressions (1.6) and (1.12), the 1limiting value
[4 (t) - 4 (0)]1—a’ determining the minimum detectable change in amplitude
caused by the external effect F (1) during the time T, is equal to the
product ¢ ¥27t/7*, multiplied by a numerical factor of about 2-4, dependent
on the selected values of the statistical errors of the first and second
kinds o and 8. In other words, for determining [4 (T) - 4 (0)]1_a, and
accordingly, for determining [F (T)]min it is necessary to know the o, T and
t* values. As pointed out in the Introduction, the t* value, even for ordi-
nary torsional pendulums, is ten days (t* ~ 108 sec), whereas for determining
the o value a time of at least 3t* is required. However, if it is possible
to make some measurements of identical F (1) effects with an identical effect
time of t (repetition of measurements) or if when Tmeas T it is possible to
determine the change in amplitude of oscillations several times during time
intervals of 7, the requirement for preliminary information on the o and t*

values disappears. In this case in place of ove u it is necessary to take

s(n - 1)’1/2t19a, where s2 is the estimate of the d;sgersion o2¢ in change of
amplitude during the time 7, determined experimentally, » is the number of
repetitions, and tl—a is the quantile of Student's ¢ [6]. Already when n = 10
_, and s? can deviate from o?¢ by not more than

1- l-a
30-40%. This procedure, as follows from the above, is correct only for the

the quantile ¢, | (n) =~u
case 4 (0) = o, i.e., when the deviation in amplitude of the oscillator is

close to the normal law, and is not suitable for 4 (0) < o/e. However, it is

easy to show that if 4 (0) > o (for example, A (0) ~ 30- 50) and the measure-

ment of deviations A (t) - A (0) is performed with a correction for the mono-

tonic decrease (reading from the regression line), the asymptotic normality /23

of the random deviations is retained.

Thus, in theoretical predictions in experiments it is possible to use
expressions (1.6) and (1.12), but the described procedure can be used in the

case of direct measurements. At the end of this section we will give examples

14
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illustrating the application of these methods in detecting small effects on

mechanical oscillators.

Now we will note an important condition necessary for satisfying the
mentioned methods for discriminating a signal from noise. If o and t* are
unknown, the experimenter must be able to repeat the measurement several
times!, or be able, without the F (1) effect, to determine 82, the evaluation
a?e,

, it is necessary that the time T , expended on the measurement,

i'f' eas
exceed T.

Now we will discuss the physical corollaries from the expressions (1.6)
and (1.12) derived above. As can be seen from these expressions, the minimum
change in the amplitude of oscillator oscillations which can still be
detected is dependent on the T and t* parameters, but in the case of thermal
fluctuations, on friction in the oscillator. The quantity of energy which is
imparted to or drawn from the oscillator by a regular external effect which

can be distinguished in accordance with (1.6) and (1.22), is:

when 4 (0) =0

AW'= K {Z(a, B)[A (D)1-a}® == X
= A ln (1/2) (L (@, B)PxT = (1.13)

when 4 (0) T ¢

AW = 2Kol' (%, B)[A(3)— A(0)],.n =

~2VH (@, By 7))

LI (1.14)
T

In (1.13) and (1.14) K = mw% is oscillator rigidity.

! The number n of repetitions must satisfy the condition n > 2, since the
tl—a (n) value was determined with the number of statistical degrees of

freedom f > 1; f = 1 corresponds to two independent measurements.
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As can be seen from (1.13) and (1.14), the different quantities of
energy constitute fractions of the equilibrium value «I'. These fractions are
the lesser the smaller the T/t* ratio. This result is not surprising, if it
is taken into account that when t* >> T we are dealing with a nonequilibrium
process. The oscillator, in thermal equilibrium with the laboratory, has a
mean energy kT. During the time t* the oscillator energy changes by a value
of about k7, and during the time T, by a value which is the smaller the lesser
the 7/t* ratio. The factors on «T (T/t*) and «T Y7/T* in (1.13) and (1.14),
as follows from what has been said above, are of the order of several units.
If there is no need to take into account statistical errors of the second

kind, only 4 1In (1/0) and 2 /Eul_a respectively remain in the factors.

Now we will find the minimum value of the force effect F (1) on a
mechanical oscillator detectable using the procedure described above. We will
examine the very simple case when F (1) = FO sin wt during the interval
0 <1< 7 and F (1) = 0 outside this interval. We will also assume that

w=w If the initial F (t) phase is selected in accordance with the

instagtaneous phase value of the oscillator oscillations, the change in the
amplitude of the oscillations is B E‘FO% (meo)_l, since T << 1*, and B can
be computed as for the conservative system. Hence, requiring that B be not
less than [4 (T)] - 4 (0)]1-a’ for the case of thermal fluctuations we

obtain

i H I '
rn mm"Ol/'——-—— / ’ (1.15)

where 6 is equal to ¢ (a, 8) v2 1In (1/a) when 4 (0) < av/e, or ¢' (a, B) u
when A(0) =~

l-a

Expression (1.15) for a case when F (1) has the form of a train of
sinusoidal oscillations, gives the precise value for the threshold amplitude
of the [FO]min force in the case of known T, m, T*, T, & and B and with the
selected measurement method (measurement of change in the amplitude of

oscillations), It can also serve as an evaluation in theoretical predictions
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of experimental results, since in measurements the o chl o Parameter is

replaced by the close parameter s (n - 1)_1/2 t,_, (m) (see above).

As might be expected, the precise expression (1.15) differs only by a

numerical factor from the approximate expression (1.1). It follows from

(1.15) that in order to increase the threshold response it is necessary to
increase both t* and T. Since FO decreases as (T)-l/z, an increase in the
duration of the train and an increase in the number n of repetitions of the

measurements identically decrease the [Fb]min value.

The correctness of expressions
A : : (1.13), (1.14), and (1.15) is limited:
1500 (3507w . a) by the classical approach to the
problem and b) the fact that no
allowance was made for the fluctuation
oy effect of the indicator of oscillator
small oscillations. In the case of

sufficiently large t* (sufficiently

‘Fw -
small H), this effect should be felt.
40 min
R The effects associated with this
W‘“m . . - »
0 - — influence are examined in detail in

sections 2 and 3.
Figure 2
In concluding this section we

will discuss examples illustrating the examined procedure for detecting a

weak effect on a mechanical oscillator with large t*.

Figure 2 shows a record of the amplitudes of oscillations of a hori-

zontal torsional pendulum with the period Ty = 230 sec and a time constant

The pendulum is a dumbbell with the mass m = 25 g on the ends,

T* % 10° sec.
The entire pendulum was

suspended on a tungsten filament 100 pu in diameter.
In the time

placed in a vacuum housing (for further details see [71>.
This is easily done

interval from 0 to a the pendulum is forcefully damped.
using several force impulses (for example, electrostatic or gravitational),
applied in the necessary phase of oscillations to the dumbbell, since when

T << 1* the phase of pendulum oscillations changes slowly with time. The

17



time interval from a to b is 1.5 hours. A highly sensitive capacitive trans- /26

ducer was used as an indicator of small displacements.

Figure 3 shows a
record of oscillations

of this same pendulum

rlirm o with a large magnifi-
cation. The upper
125+ . g5, ,,+d‘/;7. 11 -85 +8F, PP
120} h 0 41N :: | part of the figure
115+
Agk u 'H.' :i nyyfq : shows a record of the
| [Nl | . .
705t :: I X H ﬁ change in amplitude of
7/ S ' [ \ : . .
o X H ¥ h pendulum oscillations
i H I \ )
') h & H : \ ' under the influence of
Pl | | :
g - I + - o+ ! \ fluctuations and
| I‘* - . 1 i \ A . i . .
wr P "\QL;:: S sinusoidal trains with
J5+ I il I+ Hﬂ/i.' \ 1 =
b ¥ M :: AL [ \ the amplitude Fy
n ’ ¥ H : } =~ 5+10"7 dyne and a dur-
Lt {1 L ] 1 .
2 7, 7 7, % ¢ 7 ation of 5 pendulum
. Bmin : oscillation periods.

The phase of the
Figure 3 oscillations in these
trains was selected in such a way that in the intervals 71T, and T5=Ty the
force damped the pendulum, whereas in the intervals T, Tg and T4 T it swayed
the pendulum. It is easy to see the difference in the slopes of the regression
lines drawn through the points corresponding to the maximum displacements of
the dumbbell. The lower part of the figure shows a record of the amplitudes
of oscillations of this pendulum in the absence of a regular external effect.
It was more convenient to compare the difference in the slopes of the re- /27
gression lines, rather than the difference between the amplitudes at the
beginning and at the end of the selected time intervals, since this made it
possible to reduce the contribution of fluctuations created-by the capacitive
transducer. A statistical comparison of the two groups of regression line
slopes (with the force swaying and damping the pendulum) can be made using

Student's ¢, which corresponds to the recommendations presented above. When
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} T = 1,500 sec and T
5 meas

of the force [F;], gc = 1.2°1077 dyne with a reliability 0.95. We note that

= 4 hours, it was possible to resolve the amplitude
in these measurements no antiseismic shielding was used, and therefore the

resolution level was determined by nounthermal noise. The method used in this

experiment was described in greater detail in [7].
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Figure 4

Figure 4 shows a record of the amplitudes of oscillation of a light
torsional pendulum which was used as a ponderomotive indicator of the
intensity of light radiation (for further details see [8], [9]). The pendu-
lum was a glass plate measuring 1 x 0.3 x 0,01 cm, suspended on a tungsten
filament 6 u in diameter and 4 cm in length. The plate was coated with a
layer of silver about 10 p thick. The pendulum, mounted in a sealed flask,,

had a period of torsional oscillations t, = 2.3 sec and a relaxation time t* - /28

=40 min. The torsional rigidity of the fglament was K¢ = 2.4+10°3 dyne-cm.
A photoelectric amplifier was used in registering small torsional oscillations
and this made it possible to register small torsional oscillations with a
response threshold of 8:10 7 rad per oscillation. The pendulum was not

placed on an antiseismic platform and therefore the mean square value of the

deflection angle was large vA¢2 = 1,6-10 5 rad. This value corresponds to
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. . . . = A2 - o
a relatively high equivalent noise temperature Tequiv K¢A¢ /xk = 4,500°K.

However, even with such a relatively high T value, during the time

T = 23 sec (ten periods) it was possible toezzzglve small changes in pendulum
energy. The minimum quantities of energy were about AW = x60°K = 7.8-10715
erg. Figure 4 shows 38 values of the angular amplitudes of pendulum
oscillations, registered in a series. At the times b and d the pendulum was
daﬁped and swayed by pressure of a short light impulse of energy 0.9:103 erg
(this corresponds to an impulse moment of 3-1078 dyne-cmesec). In

the figure the horizontal lines denote the mean angular amplitudcs of oscil-
lations and the confidence limits for them (with a probability level 0.95) in the
time intervals a-b, b-c¢, e-d, and d-e. In the intervals b-c¢ and .e-d the mean
amplitudes are statistically indistinguishable. The difference could be con-
sidered significant if the means differed by more than a half-width of the

confidence interval A¢ .
con

In our case A¢c . = 1.8-107% rad. This means that by swaying the pendu-
lum during the time T = 23 sec (or less) from small amplitudes to A¢ =

(a¢, )2 =

- ¢ con
7.8°10 1% erg = «60 °K. This value agrees satisfactorily with the estimate

1.8-107% rad it is possible to register the energy input AW = K

of the minimum detectable quantity of energy, assuming as a point of departure

that Te = 4,500 °K:

quiv
AW z_xTequi{/%/r')

(see expression (1.13)). Substituting here t* = 2,400 sec and T = 23 sec, we

obtain AW = k46 °K = 6.5-10" 15 erg. We note that since in the estimates we

used the half-width of the confidence interval A¢con’ in (1.13) a numerical

factor was dropped. Thus, the resulting estimates of AW correspond to a low

reliability level (about 0.7).

We will cite two other figures for characterizing the described apparatus.
The value A¢con = 1.8+10°% rad corresponds to a threshold amplitude of the
sinusoidal resonance train with a duration T = 23 sec, equal to FO = 11079
dyne (if the force was applied to the edge of the pendulum). Such a force can
be created by the pressure of a light flux with the intensity ¥ 20 erg/sec.
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§ 2. Dynamic Effect of Instrument Registering Small Oscillations on a
Mechanical Oscillator. '

In the preceding section we examined the case of detection of the mini-
mum effect on a mechanical oscillator with a large time constant. The
instrument registering the oscillator displacement was considered ideal, i.e.,

it was assumed that it exerts no effect on the oscillator.

In this section we will analyze the dynamic effects caused by different
small displacement indicators (detectors). In other words, we will examine
the effect of an indicator on the characteristic frequency and damping of a
mechanical oscillator. In striving to achieve the smallest possible response,
these effects must be taken into account, and as will be seen below, in some

cases they must be carefully compensated.

Electronic small displacement indicator. We will examine the effect of a
capacitive transducer on a mechanical oscillator. The capacitive transducer
is one of the most sensitive electronic devices used in registering small
mechanical displacements. The capacitive transducer is usually an electric
circuit with an air capacitor, one of whose plates is movable (Figure 5). A
displacement of the oscillator mass results in a change in the capacitor gap
d, and accordingly, a retuning of the characteristic frequency of the electric
circuit. If the frequency of the electric generator Qgen is displaced approx- /30
imately by the half-width of the electtic circuit band (Figure 6), a change
Ad in the capacitor gap leads to the maximum change AU in the amplitude of
the electric voltage U(t, d) which can be registered by an amplitude volt-

meter. The AU quantity is
AU ~0.5U,Q ¢ -, (2.1)

where QeZ is the electric circuit quality, U0 is the amplitude of the electric
voltage across the capacitor. Usually Qgen and the circuit resonance fre-

are substantially greater than w

quency QO mech

pt
Capacitive transducers can be used in resolving amplitudes of mechanical
displacements up to 10 !2 cm and quasistatic displacements up to 1072 cm

(for further details, see the Appendix).
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The mechanism of the influence of the capacitive transducer on the
dynamic characteristics of a mechanical oscillator can be qualitatively

represented as follows. The capacitor plates are attracted with the force

SU2 (v, d)

]"(T, ([)-— ”H:'r'd?a)“’ (2.2)

where S is the area of the capacitor plates, and U is the potential difference.

Since Qgen >> W oot (usually 6 or 7 orders of magnitude), for a
mechanical oscillator only slow Fourier components F (t, d) are important.

We note that the greater the sensitivity of the sensor, the greater will be
the U/d value, and accordingly, the greater will be the mean force of
attraction. The F (1, d) value is strongly dependent on the instantaneous
position of the mass m, since displacements of mass lead to a retuning of the
circuit and a change in U (t, d). This means that the additional differential
rigidity AK = 3F (1, d)/3d is added to the mechanical oscillator due to the

F (1, d) force; this changes the characteristic frequency of oscillator small
oscillations w . [11]. This rigidity is introduced with a lag approximately
equal to the time for stabilization of electric oscillations in the circuit.
The lag for a reactive element, as is well known, leads to regeneration or
degeneration in an oscillatory system. Thus, a capacitive. transducer can also

change the oscillator relaxation time.
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Quantitative estimates for these two effects are easily obtained. The

amplitude of the electric voltage U  across the transducer circuit is

17

U - UO[(1 — ) ) 311} (2.3)

/9

where U, is the amplitude of oscillator oscillations, vy (d) = Q . .
gen’ “eir

0

Assume that the tuning is such that Yo = 1 + B/zQeZ’ and that 8 is about
unity. When B = £ 1 and greater than QeZ the amplitude Ek‘z QeZUO (2)-1/2,

and the transducer response is close to the maximum. The F (d) value for the

case of small deviations of x from do, corresponding to Yo > is equal to

m:g%tﬂ;‘[i + (g Cag) o] (2.4)

In (2.4) we have omitted the terms (QeZ g—ﬂz, (QeZ glﬂa, etc. A positive
0 0

sign in (2.4) corresponds to the right slope of the resonance curve; a

negative sign corresponds to the left slope (the signs are the same as for B).

From (2.4) we obtain the differential mechanical rigidity AK:

2.3
——— U S
x| 2E @ -, Yo%
max dx max - 1 wd3 ) (2.5)
0

Thus, on the left slope of the resonance curve the transducer introduces
a negative differential rigidity into the mechanical oscillatory system, i.e.,
it increases the period of oscillations; on the right slope it introduces a

positive differential rigidity.

If it is taken into account that the AKX value is introduced with the lag
v QeZ/Qcir
following form:

, the equation for oscillator small oscillations assumes the

mE - Hmechj: (N A-AKZ)z = 0, (2.6)
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where B oot is the friction coefficient in the oscillator. A plus sign
corresponds to the right slope, whereas a minus sign corresponds to the left
slope of the resonance curve for an electric circuit on which the frequency
Qgen is tuned. It is easy to see that the lag in ppsitive rigidity leads to
regeneration, whereas lag in negative rigidity leads to degeneration. The

self-excitatiofi condition for the right slope has the very simple form:

M. e AKE (2.7)

mec

Hence, by substituting (2.5) and the expression for ¥, it is possible to com-
pute the minimum voltage for the circuit U} at which oscillatory instability

arises in the oscillator [11]

U. . Snmmecﬁmdg 2.8
~ = ) (2.8)
2 mech$7Cel

where Qmech is the oscillator quality when U: -+ 0. As can be seen from (2.8),

the greater the time constant t* and Qm the lesser will be the Ui values

ech’
at which oscillatory instability arises.
Below, as an illustration, we give the results of measurements of the
dynamic parameters of a torsional pehdulum, whose small oscillations were
registered by a capacitive transducer (for further details, see [11]). The

pendulum had the following data: @ . = 4103, m = 4 g, dO = 0.1 cm, S =

4 cm? 2m+0.1 sec 1. The capacitive transducer circuit had Q. =

W f~—
> “mech 1y

.6106 "1 =
2m+6+10° sec *, QeZ 50.

Table 2 givés the period of oscillations &
of the amplitudes of penduium oscillations for different amplitudes of
electric voltage U  in the circuit with tuning of the generator for the left

and right slopes of the resonance curve.
The change in the period T, agrees well with expression (2.5).

The table shows that oscillatory instability for a torsional pendulum
appeared when U¥ =~ 3 V. This is somewhat less than follows from the estimate
which can be made using (2.8). The possibie reason for this disagreement is

that the self-excited oscillator used in the experiment was quite heavily

24
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loaded by the transducer circuit and 'responded'" to a change if its para-

meters with some additional % (for further details see [11]).

TABLE 2
Left Slope
u, Vv 1 3 5 7
Ty» Sec 11.0 11.4 12.2 13.0
0 + 2.4-1073 + 4.2.10°3 +1.0°1072 | + 2.4-10°2
Right Slope
.
U, V 1 3 5 7
Tys Sec 11.0 10.9 10.8 10.6
s + 110" -1.4.1073 - 3.3-10°3 | - 2.1-10" 2

As can be seen from the above, the two oscillatory systems, a mechanical

oscillator and an electric circuit, having substantially different frequencies
o . 7

Ynech 6-107),

are related to Coulomb interaction so that osciliatory instability can

of characteristic oscillations (in the described example Qcir/

arise when there is quite small friction in the mechanical oscillator. Such
d relationship is not only manifested in precise experiments with test bodies
in which relatively low-power self-excited oscillators are used as sensors.
This effect was also significant in powerful accelerators in which there was
an oscillatory mechanical instability of the diaphragms forming part of the

electric resonators [12].

In experiments with test bodies, as pointed out in § 1, in order to increase

the response it is desirable to decrease Hmedh’ relating the test mass m with
the laboratory. On the other hand, when measuring small oscillations when
using electronic transducers, it is necessary to increase U, and decrease do

(see formula (2.1)), which leads to the appearance of an additional HT MK%,

which either increases the dissipation or leads to oscillatory instability.
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Thus, these two requirements are contradictory. Accordingly, the use
of electronic transducers for registering small displacements is evidently

feasible only in experiments with relatively large masses (and accordingly,
large Hﬁech)'

If it is possible to use two transducers arranged symmetrically on a test
mass, the examined effects can be considerably compensated. Another obvious
recommendation is to decrease the T value, i.e., increase Qcir' However, as
will be demonstrated somewhat below, optical systems for indicating small
oscillations also exert an influence on the dynamic parameters of mechanical
oscillators, and as in the case of electronic transducers, can lead to the

appearance of oscillatory instability.

Optical indicators of small displacements. Two principal optical methods
in different modifications are known for indicating small mechanical dis-
placements (for further details see the Appendix). In the first method (this
is sometimes called the 'knife and slit" method or the '"optical lever" [13]),
the optical image of one diffraction grating, obtained using an objective, is
matched with a second grating which usually has the same interval. The dis-
placement of one of these gratings parallel to the other causes a light flux
modulation. Using this method it is possible to register quasistatic dis-
placements of about 10712 cm [14].

The second optical method for

measuring small displacements is

similar to the capacitive trans-

— ducer examined in the preceding
#, 2 ; segment of this section. The
:“::::::i;é:::::::::::t;,ggy0 mirrors of a Fabry-Perot resonator
TTJ T e sy //_//"/Z/’/ D are tuned in such a way that the
frequency of the monochroematic
Figure 7 source falls on the slope of a

resonance curve of the fundamental type of resonator oscillations. Small
displacements of the mirrors in the direction of the resonator axis lead to an
intense modulation of the light flux passing through it. Using this method it

has been possible to register quasistatic displacements of about 10713 cm [15].
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Now we will examine the dynamic effect of such optical indicators on a
mechanical oscillator. First we will estimate the dissipation introduced by
a homogeneous light flux in a mechanical and harmonic oscillator whose mass

experiences translational motions along the x-axis (Figure 7) [16].

The anharmonic oscillator consists of a mass experiencing oscillatory
motion in the x direction between two absolutely elastic supports a and b.
Thus, in the absence of dissipation the velocity during one half-period is /36
constant and equal to + Vo3 in the course of the other half-period it is
equal to - Vo> We will assume that a light flux NO’ completely absorbed by
the mass m, is directed along the x axis. It is clear that with movement from
b to a the mass m must receive a greater field impulse than during movement
from a to b. Simple computations show that a decrease in the velocity Av of
the mass m during a full period is equal to

Av~ N%o | 200

em ¢ (2-9)

where T is the full period of oscillations. Such a velocity decrease

corresponds to the friction coefficient

2N,
Hop ==~ (2.10)

Here Hem is the coefficient of friction of electromagnetic origin. Obviously,
for a harmonic oscillator Hem differs from (2.10) by a factor of the order of

unity.

The Hem parameter is small, even for relatively powerful fluxes. As a
comparison we point out that the friction caused by a rarified gas Hgas has
the same order of magnitude as Hem only in a deep vacuum. For a sphere with

the radius a

-]/gas,:_-- et s (] e, (2.11)
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vhere % is the concentration of molecules of a gas whose mass is ﬁ and whose
temperature is 7. In a hydrogen atmosphere with p = 10°!! mm Hg, T = 100°K,
a = 1 cm, the coefficient # = 3+10713 g/sec. If it is assumed that
Ny = 108 erg/sec, then H, = 2:10713 g/sec.

In a case when the mass m in the example considered above (Figure 7)
reflects well the radiation, the effect is retained and will be twice as

. - 2
great: Hém = 4N0/c .

If the test body moves in a direction perpendicular to the light flux
(as occurs in the case of an optical lever), the flux will also introduce

a small additional friction caused by the Robertson-Poynting effect [17, 18]:
y NV
".Iemm (1 "-R)"'g?" ’ (2.12)

where B is the reflection coefficient, NO is part of the light flux intensity

incident on the body!.

Thus, the use of any type of light flux modulators in experiments with
test bodies leads to the appearance of a relatively small friction Hem ~
No/cz, comparable only with the friction in gases highly rarified for
terrestrial conditions. The time constant t* = mcz/NO, corresponding to the
friction coefficient Hem’ is egtremely large. For example, if NO = 103 erg/
sec, m = 10 g, then 1% = 1018 sec (!). This indicates, if we take into

account the expressions derived in the preceding section (for example,

expression (1.15)), the presence of an enormous response reserve in experiments

with test bodies. 1In the laboratory at the present time it has only been
possible to obtain values t1* < 10%9 sec, and such time constants have not
been used in obtaining maximum response. We note that the use of a time con-
stant T* = mcz/NO cannot be used in expressions for minimum detectable
forces in the case of arbitrary NO values. A more detailed analysis of the

attainable resolution in experiments with test bodies for the case when the

1 The Robertson-Poynting effect, like the light friction effect in the oscil-
latory motion of an oscillator which reflects light, has still not been dis-
covered experimentally.
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only source of fluctuations is the measuring instrument will be given in

section 3.

The light flux in which the text body is situated, in addition to a
relatively small friction, also introduces a relatively large differential
rigidity

; 1 aN(r)
Night =2 ¢~ “ar

(it can be arbitrarily called "light rigidity'). 1In the case of a torsional
oscillator, it is possible to determine the '"light rigidity" in a homogeneous
flux (34 (r)/3r = 0) as well, as can be seen from Figure 8. If the oscillator
is a symmetrical dumbbell with plates on the ends, the light flux in the
directions aa' create a negative '"light rigidity', whereas in the directions
bb' they create a positive "light rigidity'", equal to

- D, NPy
J\thtc~~{*2-z—(l»&:/kyﬂlsnlzxo, (2.13)

where ¢ is the light flux density, S is the area of the plates, R is the
reflection coefficient, g is the angle between the direction of the light
flux and the dumbbell. The rigidity sign is dependent on the direction of

the light fluxes. When a, = n/4, 2 = 10 cm, R =1, S =1 cm?, & = 107

0
«em? 1"y 3 1 S .10 2 .
erg/sec+cm® and the "light rigidity KZight 1.3-10 dyne-cm.
As an illustration, we
give the parameters of a

torsional pendulum whose

mirror /,//b?;, N {¥;>\\ aireor period of characteristic
N J ‘\\ AN oscillations is retuned due
// ;1_:/,/, zz; Neetn \\\ to "light rigidity." The
//v, // \\\ . \\ pendulum is a dumbbell 14 cm
a // \\\j> in length with light aluminum

lugs on the ends. The moment
of inertia of the dumbbell

Figure 8
was 0.2 g+cm?. The dumbbell
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was suspended horizontally in an evacuated flask on a tungsten filament

8 u in diameter and 20 cm in length. In the absence of light fluxes the
period of characteristic oscillations for the dumbbell was 15.8 sec. If the
light fluxes are directed as shown in Figure 8, with a flux density

® =~ 210% erg/sececm? the period of oscillations changed from 13.9 sec
(direction of fluxes aa') to 19.7 sec (direction of fluxes bb'). By smoothly
changing the flux density or the angle of incidence of the flux on the plates,
it is possible to obtain a smooth retuning of the period of characteristic

pendulum oscillations.

The use of Fabry-Perot resonators (or other interferometers) in theory /39
makes it possible to obtain a greater response in registering small dis-
placements than the use of optical levers (see Appendix). However, an
increase in response results in an increase in the dynamic influence of such
an indicator on the mechanical oscillator. We will estimate these effects in
the experimental model shown in Figure 9. Assume that one of the mirrors in
the Fabry-Perot resonator is in a fixed position, whereas the second is dis-
placed together with the mass m of the oscillator in the direction of the
resonator axis. In order to obtain the maximum change in photodetector
current with displacement of the mass it is necessary to tune the resonator
in such a way that the frequency of the optical source falls in the middle of
the resonance curve slope. This will result in maximum response, but at the
same time the light pressure on the mirror will greatly change during the
displacement. The ''light rigidity' arising in this way will be relatively
great. Its maximum value [Klight]max is equal to

”"71' Imax™ -+ KA e (2.14)
ight e ho(l-— 1) .

where NO is source intensity, AO is the resonance wave length, and R is the

mirror reflection coefficient. The sign of Klight is dependent on which of /40

the resonance curve slopes is used for source tuning. It is generally easy to
compute the Klight value. This is done using the well-known equations for a
Fabry-Perot resonator [19] and computing the light pressure intensity on the

mirrors as a function of the distance between them.
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If in (2.14) it is
assumed that N, = 300 MW,

0
Source Mirrors of Fabry-Pérog resonator >\0 = 6+10 ° cm, (1 - R) =
of co- ’ \: -
i = . 2 e~
,{’2}’5%%851 ) SRR | S - 1+10°%, then (K 0 s
|| radiation + 210 ° dyne/cm.

%

As in a capacitive trans-
ducer, the rigidity KZight in
the Fabry-Perot resonator is
not introduced instantaneously
but with some lag ¥ = 1/c
Figure 9 (1 - R). Accordingly, in

addition to the rigidity in an
oscillator with a Fabry-Perot resonator there will be friction, whose sign is

determined by the rigidity sign

[ Noid (2.15)

em]maxl‘ ! ,“_‘7_;(] — 1y

The X maximum was used in expression (2.15). Thus, in a Fabry-Perot

light
resonator there is additional friction 4wZ/kO(l - R)3 times greater than the
friction introduced into the oscillator by "free' light fluxes (compare the

expressions (2.15), (2.10) and (2.12)).

If |—Hem| > H the oscillator oscillations will become increasingly

>
greater until the Zﬁg?itude of the oscillations, as a result of the nonlinear
dependence KZight (1), becomes stationary. This effect is similar to the
already described interaction between two oscillatory systems (radio-frequency
and mechanical) in the case of a capacitive transducer. In a capacitive
transducer the interaction caused by the Coulomb attraction of the plates is
nonlinear; in the Fabry-Perot resonator the light pressure is also quadratic-
ally dependent on field amplitude. As in the case of a capacitive transducer,
the X7 iome
sated.

and Hem introduced by the Fabry-Perot resonator can be compen-
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In concluding this section we will give a numerical estimate. If
- 102 — .10 5 _ - 1.10°2 - , -
. = 10“ cm, AO = 6+10 ° cm, (1 - R) 1-10 =, NO 300 mW, then [Hem]max

.10 2 = = .102 -1 - 5 .
+ 6+10 g/sec. When m 10 g, ook 27+10¢ sec and Qmech 10°, we have:

[Hem ]max - Hmech'

Radiometric oscillatory instability. The radiometric effect, as in the
case of light pressure, can create an additional differential rigidity. With
a vacuum of about. 10™" mm Hg the radiometric pressure is already an order of
magnitude less than the light pressure and accordingly the 'radiometric
rigidity" is an order of magnitude less. However, the thermal inertia of the
mass of a mechanical oscillator can be relatively great (several seconds or
more). This means that the radiometric rigidity is introduced with a lag.
Thus, even a radiometric rigidity of small magnitude can introduce into a
mechanical oscillatory system a positive or negative (depending on the
rigidity sign) friction. The sign for "radiometric rigidity' is the same as
for '"light rigidity" (this effect was discovered by the author in collabor-

ation with V. N. Rudenko).

Table 3 gives data on the relaxation time 1* of mechanical torsional
oscillators used in checking the existence of "light rigidity' (see Figure 8).
The T6 value is the relaxation time without light fluxes; t* is the pendulum
relaxation time when the direction of the light fluxes is along aa’, Ti is the
pendulum relaxation time when the light fluxes are directed along bb’' (see

Figure 8). The left column gives the pressure in the flask in which the

pendulum was placed.

TABLE 3
p, mm Hg 18, min T*, min T:, min
51077 16.0 10.0 26.0
2.10 8 17.5 15.0 18.5

The table shows that the difference [15 - 1*| and [T6 - t*| increases with

a deterioration in the vacuum. At higher pressures an oscillatory instability

appears for this pendulum.
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In summarizing the considered effects of the dynamic influence of
electronic and optical instruments on mechanical oscillators, we must once
again emphasize the theoretical possibility of compensating such a dynamic
effect; however, this will not change the fluctuation effect of these instru-

ments on oscillators.

§ 3. Classical and Quantum Fluctuation Effect of a Measuring Instrument on
a Mechanical Oscillator ‘

In § 1 in this chapter, we examined methods for detecting weak regular
effects on a mechanical oscillator having a large time constant t*. It was
assumed that the instrument registering the change in movement of the mass m
of the oscillator, caused by a regular effect, was ideal. In other words, the
assumption was made that the instrument exerts neither dynamic nor fluctuation
effects on the mechanical oscillators. In § 2 we examined the dynamic effect
exerted on an oscillator by different types of indicators, an effect which

can be compensated.

An increase in the time constant t* of an oscillator, or its equivalent,
a decrease in the friction coefficient H, being a source of a fluctuating
force, leads to an increase in the resolution in detecting the effect of
regular F (1) forces on an oscillator. It is clear that in the case of
sufficiently small A (sufficiently large t*) a fluctuation effect begins to
appear from the small displacements indicator. It is important to note that

these fluctuations (of nontechnical origin) cannot be compensated.

With a further increase in 1* (decrease in H) the minimum detectable
F (1) values will be determined exclusively by the fluctuation effects from
the indicator. In other words, in macroscopic experiments with test bodies
with sufficiently large t* the situation is similar to that in quantum
mechanics: it is impossible to exclude the measuring instrument from consider-

ation.

We will examine the fluctuation effect of two types of instruments for
registering small oscillations .of macroscopic mechanical oscillators. We will

first discuss the electronic detector of small displacements.
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Figure 10 shows a diagram of an experiment in which a capacitive trans«

ducer was used as the small displacement indicator. The generator frequency

is slightly (by approximately half the width of the electric circuit

f
gen
resonance curve) displaced relative to the circuit resonance frequency Qcir

Small oscillations of the mass m (and accordingly, the capacitance () lead
to large changes in amplitude of the circuit electric voltage; these are
registered after rectification by the measuring instrument.

We will assume that by symmetrical

¥ -
—_— ./ arrangement of the two (or more)
[ T "
p 4 capacitor plates it was possible to
7€L§:f\ 4 compensate completely the dynamic effect
. 2 of such a sensor on the mechanical
¢ Z
E:’V“’\ﬁ:::F{:)ﬁ4 oscillator (see § 2). We will also assume
- r
2, that fluctuations in frequency and
. amplitude of the self-excited oscillator
Figure 10

forming part of the sensor (see Appendix)

have been eliminated or strongly compensated and that the H value and
accordingly the mechanical fluctuations caused by H can be neglected (see

formula (1.15)). Then the thermal fluctuations of electric voltage across

the resistor » in the electric circuit lead to capacitance fluctuations. The
Coulomb interaction of the capacitor plates, whose charge fluctuates, will be

the only force F;Z, against whose background it is necessary to detect the

regular ¥ (1) force.

Since the Coulomb attraction of the capacitor plates is dependent on the
square of the voltage between them, F;Z will also be dependent on the ampli-
tude of the electric voltage u, caused by the self-excited oscillator.

Simple computations give the following expression for the spectral density of

2% S 44 = + .
EfZ under the condition that W, ol << Qeir and Qgen Qcir (1 =+ 1/2Q92)°
e SO s
(15ﬂ);:z—~ﬁ:ge%1:, (3.1)
Zn'—’da :

where S is the area of the capacitor plates, U, is the amplitude of the

circuit electric voltage, QeZ is its quality, r is the active resistance in
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the circuit, whose temperature is T, do is the mean distance between the

plates.

In order to detect F (t) it is necessary that

(F () Imin> TV (F)*Af, (3.2)

where Af is the frequency band within which most of the F (1) spectrum lies;
¢ is a factor having the order of several units and dependent on the selected
level of detection reliability (if only a statistical error of the first kind

is stipulated, ¢ coincides with the ¢ o quantile of Student's t).

1-
As can be seen from (3.1) and (3.2) in order to decrease the minimum
detectable [F (T)]min value it is necessary to decrease the amplitude of the
electric oscillations in the circuit U%, decrease S and QeZ’ and increase the
gap do. However, this requirement leads to a decrease in response in measur-
= . +
<< Q . and @ Qcar (1 l/ZQQZ), the

ech cir gen
minimum detectable displacements [« (T)]min when using a capacitive trans-

ing the [F (T)]min value. If .

ducer will be

s Ay

[ (Dlmin - L~ V % TrA]. (3.3)

= l,"
~

Thus, [F (T)]min should cause a displacement greater than [x (T)]min, and
therefore, U%/dO should be quite large; on the other hand, condition (3.2)
should be satisfied; it therefore follows that Um/d0 should not be greater
than a certain value. The existence of these two such contradictory require-
ments is indicative of the existence of an optimum strategy: the [F (T)]min
value must simultaneously satisfy condition (3.2) and cause a displacement
greater than (3.3). This means that there is an optimum value [Uw]optim’
which can be computed having only preliminary information on the F (1) form.

The minimum detectable force [F (T)]min actually corresponds to this [Uw]optim'

We will find [F (T)]min for the case F (1) = FO sin Wooh during the

time interval 0< t< T and F (1) = 0 outside this time interval. Then /45

Az = Fo% (2"““‘mechl)~l" (3.4)
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Substituting into (3.4) an expression for [x (T)] in’ in which Af = 1/7,
and solving this equation jointly with (3.2) for FO and U, we obtain

[Folmin~ C"“ ]/ Vz ung)mec (3.5)

$a2 Vim ln(.

mech ™

17 ]opum : T I5Q . !
e

(3.6)

The expressions for [F] i and [U, ]optim in the case F (1) = F during the
interval 0 <t <%, if 1 << l/w ool will differ from (3.5) and (3.6) only

in the coefficient 2, since for a short impulse Ax = P (mw h) 1

These simple computations reveal that in the case of a sufficiently
small friction in a mechanical oscillator, the equilibrium thermal fluctuation
in the electronic instrument registering the small oscillations will deter-
mine the minimum detectable regular force [F (T)] 1 provided that the
detector is tuned in the best way, taking into account preliminary infor-
mation on the ¥ (t) form. As can be seen from (3.5), the expression for
[F.]_. includes only the temperature T and the characteristic frequency of
circuit oscillations @ . , whereas the other parameters of the electronic

ceir’

device are determined only by [U ] It is also extremely important that

v optim’
with optimum tuning [FO] decreases as (%) 1. However, if the fluctuations
caused by H are decisive, the [FO]min value decreases as () “1/2 (see

formula (1.15)).

It follows from (3.5) that in order to reduce the threshold [FO]min it is
advantageous to decrease the wmech/gcir ratio. Since in deriving (3.5) and
(3.6) we used the classical Nyquist theorem, not the Kallen-Welton expressions
(for example, see [20]), formulas (3.5) and (3.6) lose their validity when
KT/Qcir ~ f. The role of quantum fluctuations is more conventiently examined
in the case of an optical indicator.
The computation of [F (T)]min given above for two specific cases of the /46

F (1) form is easily repeated for any other F (1) form.
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In (3.5) we will assume that «x7/Q . = 10 %, w
5 eir 15 mec@
£ = 10> sec, ¢ = 2. Then [Fo]min = 1.6-10 dyne. With the same W oot

=1secl,m=1g,

s m
and %, this [FO]min value is 7-8 orders of magnitude less than it is

possible to resolve in present-day laboratory experiments. The next chapter
(88§ 5, 6, 7) will give a more detailed comparison of the attained sensitivity

in experiments with test bodies and the theoretically attainable response.

Now we will examine the fluctuation effect of an optical indicator on a
macroscopic oscillator. Such an effect is caused by light pressure fluctu-
ations and with elimination of technical instabilities of light forces it has
a quantum nature. Before proceeding to an analysis of this problem, we will
discuss two (nonclassical) results for a mechanical oscillator. There is a
precise solution [21] (I. I. Gol'dman, V. D. Krivchenkov) for the probability
Pon of transition of a quantum oscillator from the fundamental to the n-th

state after a time-finite exposure to a classical force F(t):

v ¥
pO,n - nt ! (3,7)
{00
. 1 Py e drl
Y = | ) TR € meehde ] (3-8)
mech -=23

where m is the oscillator mass, 0ol is its characteristic frequency. If
F (1) has the form of a train of sinusoidal oscillations with the amplitude

FO’ a frequency coinciding with CRSS and a duration %, then

Y= Fﬁ%2(2aahnechnﬂ"1- (3.9)

oo

can be considered detected if I p,. = (1 - a)
0 i=1 07

A force with the amplitude F

is quite close to 1. The o parameter, as in §, has the sense of a statistical

error of the first kind. Expression (3.9) can be rewritten as follows: /47

-
(Fo)y o =L Voo - (3.10)
T

m.
mech
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Here % is the time of exposure to the F (1) force, but not the time expended
on measurement Tmeas When y = 2, 3, 4, the (1 - o) value is equal to 0.86,
0.95, 0.98 respectively.

Expression (3.10), like (3.5)

(if in the latter «T7/Q . 1is re-
Mirrors of Fabry-Perot resonator cr

o ~ n
—— f:~___ placed by %), does not, however
ggr‘;’_l't. |~ %E‘gggf___;@’ contain an answer to the question
zadiation L of the minimum detectable ampli-
tude of the force [F.] . for a
0'min
stipulated time Tt . It is
meas
Figure 11 ossible to "learn' whether an
g P

oscillator has responded to the
F(t) force, i.e., whether it has "absorbed' one or more quanta only by await-
ing spontaneous radiation, whose time is not always easy to determinel. Thus,
it is necessary to supplement the oscillator by an instrument in which there
are also quantum fluctuations, and take into account its inverse effect on the

oscillator.

Before proceeding to an examination of this problem, we note that the
probability of transition of the oscillator under the influence of the same
force from the zn-th state into the next state will be the greater, the greater
the n value. Using well-known expressions, derived by the methods of pertur-
bation theory for p, [33], it is easy to find that if F(t) has the form of
4 train with the duration %, the amplitude FO’ and a frequency coinciding with

W ook the probability of transition from the n-th to the (n + 1)-st state is /48

close to unity if?

! For example, if the r1g1d1ty in the 050111ator was created by a grav1ty
field gradient (as was the case, for example, in some experiments made by
Eotvos [22]), in order to determine the time of spontaneous radiation it is
necessary to quantize the gravitational interaction.

< The probability ey
-l,l = [O:::” e where Q. W) ==
L e L

and y coincides with expression (3.8). Assuming y to be small (if for no
other reason than to insure that py,;; will be close to 1), and also assum-
ing that Fy (t) = FQStnqwech T during the interval 1, we obtain the approxi-

mate expr6551on (3

{(— \.3‘: Yels 2 Il
(\— Wi(s 4 /. ey ]ul‘

38



4,_%

7o~ L JZhwmechm (3.11)
0 - n

Thus, the greater the »n value the lesser will be the detectable force (with
the same reservations on the observation time as for expression (3.10)).
Expression (3.11) shows that the greater the initial amplitude of oscillator
oscillations, the lesser will be the role played by the discreteness of its
energy levels and the more important will be the fluctuations in the instru-
ment registering these oscillations. Accordingly, in the approximate problem
examined below we will assume the oscillator to be classical and take into

account only the quantum fluctuations in the optical instrument.

We will assume that a Fabry-Perot resonator (Figure 11) was used as the
instrument registering the small oscillations of the classical oscillator.
One of the resonator mirrors, a source of coherent optical radiation with the
intensity NO and frequency Vo> attached to the oscillator mass, excites in the
resonator oscillations in the fundamental type of oscillations. Motion of
the mirror attached to the mass m results in a modulation of the light flux

emerging from the resonator and this flux is registered by a quantum counter.

In order to obtain the maximum response such a resonator must be slightly
(by Av = vO/eres’ where Qres is the resonator quality) detuned relative to

the frequency v With such tuning, as in the case of a capacitive transducer,

0"
the mechanical oscillations of the mirrors give the maximum light flux modu- /49

lation intensity (see Appendix).

We will assume that the use of a compensated measurement circuit can
eliminate the rigidity AKX and the friction Hem introduced in this experiment
by the optical indicator and associated with the high resonator quality. With
respect to the light source, we will assume that technical instabilities of
intensity and frequency have been compensated and that the spectral density of
source frequency deviation w (v) and the spectral density of the light flux

modulation Mﬁ are equal to
1 . e-llyn -m [Q;:l-m (3/)12

Ppm = nlm! !
where - - )

L y) == S (— 1P Py st (s 4 1)
e 2’ (=W (s+L—pppul’

- =0
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Rthvy (Av
w(v) - jﬁ‘_%‘_\res}? (3.12)

" '

2 a4y 2hvy
I 4 yo (3.13)

where Vo is the mean source radiation frequency, NO is the mean intensity at

the resonator input, Av is the width of the resonator frequency band, 4

and A' are dimensionlesze;actors. If the photons are emitted independently
and the frequency Vo is sufficiently great so that there are no characteristic
Bose fluctuations, then 4’ = 1. In modern gas lasers A’ = 102 for the low
modulation frequencies and with an increase in modulation frequency 4' = 1

- (for example, see [24]). Approximately the same situation exists for the
factor A (see [25]). In subsequent computations it will be assumed that
A=A".

If the fluctuation characteristics of the source are described by
expressions (3.12) and (3.13), the minimum detectable classical displacement.
[x (T)]min which will cause modulation greater than the fluctuation level will
be

T

. 1 —R)c
[x(r).'min=-—-€( = J ]/ZVoNo AAf. (3.14)

In (3.14) R is the coefficient of reflection from the mirrors, Af is the

frequency band characteristic for = (t), ¢ is a dimensionless factor, the

same as in formula (3.3), ¢ is the speed of light. Formula (3.14) was

derived on the assumption that the flux is quite powerful No/thAf >> 1

(under this condition expression (3.13) has sense); it was also assumed that /50

the quantum yield of the photodetector is close to unity.

The F (1) force must cause a displacement greater than [x(T)]min' For

example, if F (1) = FO sin Wooh T during the interval 1, it is necessary that

7o (% 1—R ~h
LTI R 3 L2 V4 A. (3.15)
mech ) .

2}\’()\’0’(
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On the other hand, light pressure fluctuations on the optical resonator walls
should not be greater than F (t). In a case of F (t) having the form of a

sinusoidal train,

- Van: VviNod
F°>€(1—-R)c “—‘ R)c]/ o (3.16)

From a comparison (3.15) and (3.16) it can be seen that the requirements on
source intensity are contradictory: the greater the mean 1nten51ty NO, the
smaller are the forces which can be discriminated (see (3.15)); on the other
hand, an increase in NO leads to an increase in the absolute magnitude of
pressure fluctuations on the mirrors, and therefore increases the threshold
of the detectable force (see (3.16)). This means that, as in the case of an
electronic device, there is an optimum mean intensity [NO] . at which the

optim

FO values computed using {(3.15) and (3.16) coincide. This force amplitude

will be the minimum detectable quantity.

Solving (3.15) and (3.16) jointly for FO and NO, we obtain

[Folmin=8—= Vh")mech”m (3.17)

"””mech“ — R) Mr‘

[N lgpgim = —— 28 : (3.18)

optim ™~ e

In contrast to formulas (3.10) and (3.11), in formula (3.17) the T parameter

is simultaneously the time of the effect and the time expended on measurement.

As can be seen from a comparison of (3.10) and (3.17), when 4 = 1 they coin-

cide with an accuracy to a numerical factor of about unity. It is very

important that the parameters of the optical resonator do not enter into the /51
formula for the minimum detectable force (other than the factor A, character-

izing the source statistics).

After comparing formulas (3.17), (3.10) and (3.11), it can be concluded
that neglecting the discreteness of the oscillator energy levels is justified
in any case when 4 = 1 and n 2 102. These conditions are necessary for the
use of the approximating formula (3.17) in computing the minimum detectable

amplitudes of forces for a stipulated measurement time. We note the
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similarity of formulas (3.17) and (3.5): in both cases, for both the optical
and electronic sensors, the preliminary information on signal duration T makes
it possible to formulate the law of decrease in the minimum detectable force:
(L.

In deriving (3.17) and (3.18) we examined an idealized model of an
experiment with a test body; accordingly, the region of applicability for
these formulas is limited. However, as will be clear from the estimates
given below, this region is relatively broad, particularly for small W, oot
and large T.

As already mentioned, expression (3.13) is valid only for relatively
powerful light fluxes when the condition No/thAf >> 1 is satisfied. Assuming

in this inequality that Af = 1/T and substituting [NO] into it, we

optim
obtain the lower limit for masses in experiments with test bodies for which

the approximate formula (3.17) is correct

T

LA (3.19)

O nech(! — R)2

. . . _ -1 _ - 2.10°5 .
If it is assumed in (3.19) that ook = 1 sec *, R =0.99, AO = 610 cm, it

is necessary that m >> 1+10"13 g. Thus, the lower limit for oscillator masses

for which (3.17) and (3.18) are correct is quite small.

In order to be able to use formula (3.16), from which (3.17) and (3.18)
were derived, it is necessary that the mechanical oscillator have classical
interaction with the light flux pressure fluctuations. This means that the
oscillator must have an initial amplitude of mechanical oscillations Lo
sufficiently large in order that the light pressure fluctuations during the /52
time T either draw from it or impart to it an energy substantially greater

than hwmech' Assuming 4 = 1, it is easy to demonstrate that
Sl mY 2
zyp > =R Y Frz- (3.20)

In its physical sense the x, Pparameter is similar to the characteristic
amplitude of nuclear oscillations in a crystal lattice (characteristic

temperature) in the Mossbauer effect. Expression (3.20) indicates that the
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frps——

[a (T)]min value in (3.14) and (3.15) must be regarded as an increment of

the displacement of oscillator mass toward Lo

By substituting the [NO] value from (3.18) into (3.20) in place of

optim
NO, we obtain

I “-\.]/ ak

A 4 nt(nmec.'h (3.21)

It is easy to see that the condition coincides with the above-mentioned

requirement n > 102.

The formulas (3.17) and (3.18) derived above, as well as the restrictions
on the region of their applicability (3.19) and (3.21), are valid for the
considered experimental model with a test body in which one extremely important
simplification has been made: the light flux is the only source of a mechanical
fluctuation effect, and the oscillator mass m, together with the mirror of the
Fabry-Perot resonator, is regarded as an absolutely solid body. However, the
real mass and real mirror have a finite temperature and spectrum of character-
istic mechanical frequencies. If the mass and mirror are regarded as ideally
heat-insulated from the laboratory, in this case as well the fluctuation
exchange of energy between the internal mechanical degrees of freedom in the
passive "mass-mirror'" thermostat can lead to a swaying of the oscillator as a
whole. We will regard this mechanism of the fluctuation effect on an

oscillator in a simplified model.

We will assume that the oscillator rigidity K, asymmetrically connects

1
the oscillator mass m to the laboratory. We will assume that X, does not

introduce mechanical friction into the oscillator (Hl = 0), andlaccordingly,

if the mass m is considered an absolutely solid body, the limiting formulas
(3.17) and (3.18) are applicable for the oscillator. The characteristic
thermal oscillations of the mass m, due to the asymmetrical connection of
rigidity Kl to the laboratory, lead to a swaying of the center of mass relative
to the laboratory. It is clear that the principal contribution to such a
process must be from low-frequency types of oscillations of the mass m. We
will 1imit ourselves to a consideration of the most low-frequency type, having

the frequency Wy For this purpose we will visualize the mass m in the form of a
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quadrupole oscillator with the concentrated masses m/2, rigidity K2 = mw§/4, and
friction H2 = wzm/ZQ2 (Figure 12)., The fluctuation force FfZ’ whose spectral
density is (Ffz)i = 4KTH2, causes relative displacements of the masses form-

ing the quadrupole oscillator. Since the left mass of the quadrupole
oscillator is connected to the laboratory by the rigidity Kl, whereas the

right mass is '"'free', the center of mass of the quadrupole oscillator will be
displaced relative to the laboratory coordinate system. The Efz force has a
continuous frequency spectrum beginning from zero; accordingly, the center of

mass will be excited and at the frequency wy = VKl/m.

Thus, formulas (3.17) and (3.18)
will have validity if the fluctuation
increments of the amplitude of oscill-
ations for the center of mass m, caused
by pressure fluctuations [NO]optim’
exceed the displacements caused by the

FfZ fluctuation force related to H2.
Figure 12 In the case of a sinusoidal train it is

necessary that

S ‘“f 2almw, Wy ! GeT Ha
Vhoym > =1/ - V e
’ 2 T (3.22)

g

Q.7 o

o]

In deriving condition (3.22) it was taken into account that w; << W

2
A more rigorous examination of this problem, taking into account all
possible types of oscillations in the mass m which can lead to a displacement

of the center of mass m, leads to the following condition:

2
==2 i

oo o —

2 yF T O O7 5 S 4AuT0L
= Vo > 2 V=" (3.23)
where 6 is the distribution of friction along m, L is the linear dimension of
the mass in the direction of oscillations. As can be seen from a comparison

of (3.22) and (3.23), it is entirely possible to limit oneself to the first

term of the series, due to its rapid convergence.

44



It follows from the above discussion that formulas (3.17) and (3.18) can
be used and there is no need to employ an absolutely solid body as a test
body. It is sufficient that in the case of finite T there be a small ratio
of the fundamental oscillator frequency to the frequency of the lowest type
of oscillations of the test body (or the test body together with a mirror).

Now we will give estimates for specific parameters entering into con-
dition (3.22). Ifm =10 g, w; = 61071 sec™ !, T = 103 sec, for the left-
hand side of (6.22) we obtain 1.6-10 16 dyne. If the mass m; = 10 g has the
form of a sphere fabricated from ordinary materials (steel, quartz, aluminum),
then W,y = 2+10% sec”! and QZ = 10%, Assuming T = 300 °K, for the right-hand
side of (3.22) we obtain 3.6+10 20 dyne. Thus, for the above-mentioned
parameters condition (3.22) is satisfied. In other words, even at room
temperature the fluctuations of quantum origin in an optical indicator

determine the minimum detectable force.

In conclusion of our analysis of formulas (3.17) and (3.18) we note that

the use of optimum strategy (which makes it possible to decrease [F as

. O]min
(1)71) is limited: on the right-hand side of condition (3.22) T appears as
(%)_1/2, whereas on the left-hand side, it appears as t !. This means that
with sufficiently large T and with the other parameters fixed, condition
(3.22) will be impaired and the use of an optimum measurement strategy will

be impossible.

Now we will briefly discuss still another restriction for formulas
(3.17) and (3.18) in the direction of high frequencies of characteristic

oscillations for a mechanical oscillator.

A light impulse with the energy AW (the impulse can also be of fluctu-
ation origin) upon incidence on the oscillator, causes not only the mechanical
impulse AW (1 + R)e !, but also partial heating of the mass m, and therefore,
a nonstationary temperature field. This field leads to the appearance of
acoustic waves in the mass m; these waves can also sway the oscillator as a
whole. The appearance of thermoelastic waves under the influence of powerful
light impulses has already been observed experimentally [26-28]. It can be

shown that the ratio of amplitudes of oscillator oscillations caused by the
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light pressure aZight and the thermoelastic effect a., conforms approxi-

mately to the following expression:
a‘light (1 --R)x

—_——

e (1-—R)Lyco

. 3.24
mech ( )
Here R is the reflection coefficient, x is the heat capacity of material in

the mass, & is the coefficient of thermal expansion, L is of the order of the

linear dimensions of the mass m (for further details, see [29]).

It follows from expression (3.24) that in the case of sufficiently high
@ oot (of about several kc/sec for steel, quartz, and aluminum) the
oscillations of a mechanical oscillator caused by fluctuations of 1light
préssure in the flux incident on the oscillator will be comparable to the
oscillations caused by the thermoelastic effect. Thus, expression (3.24)
limits the applicability of (3.17) and (3.18) for mechanical oscillators with

a relatively high W ook value.,

The computations made above for a Fabry-Perot resonator, used as a small
displacement indicator, lead to formula (3.17) for the minimum detectable
force, in which only the factor A, dependent on the statistical character-
istics of the optical source, was included. Other parameters for the optical

indicator were not included in the expression for [FO] This important

circumstance is not correct for the Fabry-Perot resonazzz alone. Without
derivation, we will give the results of similar computations for another

variant of an optical indicator. We will assume that instead of a linear

mechanical oscillator we employ a torsional oscillator with the moment of

inertia I and the characteristic frequency © oot (Figure 13). As the indi-

cator we used the so-called "knife and slit'" (optical lever) method. Small /56
oscillations of a mirror attached to the mechanical oscillator cause a dis-
placement of the focal spot of the optical ray passing through the lens 0.

The presence of a fixed, attached optical knife near the focal plane results

in an intense light flux modulation for small angular oscillations of the

oscillator; this is registered by a photodiode.

If it is assumed, as in the derivation of (3.17), that the only source

of a fluctuation effect on such an oscillator is light pressure fluctuations
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on the mirror, by making computations similar to those given for (3.17), it is
possible to derive an expression for the minimum detectable moment

[Mom F (T)]min for the optimum intensity [NO] of the light flux. If the

optim
moment of force has the form of a sinusoidal train, then

e T
[Mo Folmin== & =V liomecnl A" (3.25)
. Io h Ao
[ Voloptim= =

Ta® (3.26)

where a = Db/2f, D is the lens aperture, f is the lens focal length, b is the
distance from the mirror to the focal spot. The coefficient 4’ coincides

with the coefficient in formula (3.13).

It is important that the
requirements on source frequency
stability in such a model are
substantially lower than in the
experiment with a Fabry-Perot

resonator.

’ Thus, formulas (3.25) and
ﬂZii:::EEEéé (3.17) coincide with the replacement
e

of the mass by the moment of inertia

Figure 13 and the force by the moment of

force. Formulas (3.25) and (3.26)
for the minimum detectable moment and optimum intensity have the same

limitations as (3.17) and (3.18).

§ 4. Optimum Strategy for Measurements in Experiments With Test Bodies;
Potential Resolution.

Now we will compare different fluctuation limitations on the detection

of a small force acting upon a macroscopic mechanical oscillator.

As was demonstrated in §§ 1 and 3, it is possible to obtain three
different threshold formulas for the minimum detectable forces. We will com-

pare the formulas for the amplitudes of the minimum detectable forces (the
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force has the form of a resonant sinusoidal train) for these three threshold

cases

/Al
[FD]min: Z;]/ _;%#, (1.15)
. T s wlme
T35 ] min= L l/n Y22 Cmech (3.5)
T “ cir
[Folmin= &=V Bmopend. (3.17)
Formula (1.15) determines the lower limit for the detectable amplitude FO in

the case of classical thermal noise, provided the fluctuation effect from the
measuring instrument is substantially less than the effects of a dissipative
element connecting the test mass to the laboratory. Formulas (3.5) and
(3.17) make it possible to estimate the minimum detectable amplitude of the
classical force FO’ provided there is optimum tuning of the electronic
(formula (3.5)) or optical (formula (3.17)) sensors, which are the only
sources of the fluctuation effect on m. The extremal formulas (3.5) and /58
(3.17) are correct only for not excessively high W ook and sufficiently large
m (for further details, see § 3). The optimum tuning method, which leads to
formulas (3.5) and (3.17), as was emphasized in the preceding section, is not
the only possible method. The absence of the detector parameters in explicit
form in the formulas for [FO]min is evidently universal for any types of

detectors with optimum tuning.

Comparison of (3.5) and (3.17) shows that optical indicators of small
displacements in theory make it possible to obtain (with optimum tuning)

lesser threshold values for the detectable force.

We will note still another important circumstance for cases when formulas
(3.5) and (3.17) are applicable. In contrast to (1.15), in formulas (3.5)
and (3.17) the dispersion for a single measurement decreases as (t)72. Since
the parameters A and I' are not always known in advance, it is necessary to
repeat the measurements so that instead of the dispersion it will be possible
to use its evaluation from g small sample (a similar examination for

formula (1.15) was given in § 1 for the unknown t* and 7). If we are not
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concerned with statistical errors of the second kind, then ¢ = tl—a (n) and

the [FO]min value is proportional to
t1-a(n) [;7 V;]‘l = Vﬁt 1-a (7) r;xjwas

where the total time expended on the measurement Tt = n%, n is the number

of repeated measurements, tl-a (n) is the quantilem§?88tudent's distribution.
The product /ﬁ'tl_a () has a minimum dependent on the selected value of the
statistical error of the first kind a. It is easy to determine this minimum
by using well-known tables of tl_ (n). For example, for a = 0.01,

min [v% 1. M1 = 9.8 when n =

possible to select the optimum » for the available measurement time Tt

o
6. Thus, by stipulating the a value it is

L)
meas
This n corresponds to the minimum [FO]min when the statistical characteristics
of the source (7 or 4) are unknown. It is clear that an optimum strategy is
possible in selecting n and in taking into account the statistical errors of

the second kind.

These expressions for [FO]min for a specific case when the force has the /59
form of a resonance sinusoidal train with the duration T, as is easy to see,
also retain validity in a case when F (1) has the form of a short impulse

T << l/wm In this case there is a slight change only in the numerical

ech’
factors on the right-hand sides of (1.15), (3.5) and (3.17). It is easy to
repeat the computations leading tp formulas (3.5) and (3.17), for a F (1)

force of an arbitrary form which is finite in time.

It is possible to give preference to formula (1.15) or (3.5) and (3.17)

when discussing specific experimentgl conditions only if data are available
*

for T, =, Qcir’ “mech

* the response limit will be determined by the instrument fluctuation effect

(formulas (3.5) or (3.17)).

and A. Obviously, in the case of sufficiently large

As already mentioned in § 3, formulas (3.5) and (3.17) coincide with an
accuracy to the numerical factor 2/q1r—2—.£, provided that KT/Qcir is replaced
by the Planck constant #. However, (3.5) is correct only when Kgygcir >> .
In further numerjcal estimates we will assume in (3.5) that KT/Qcir = 107
(this will correspond to 4 = 102 in formula (3.17)).
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Now we will cite examples of the attainable response in different types

of instruments. In the preceding section, in the numerical example for (3.5)

when «7/Q . = 107, we assumed m = 1 g, w 1 sec !, T =1+10% sec, ¢ = 2
cir mech
(this corresponds to a reliability of about 0.95) and we obtained [Fb]min =

1.6-10715 dyne. In particular, this means that the minimum periodic
acceleration which can be registered in the case of a mass m = 1 g during the
time T = 103 sec and with a period of change in acceleration Ty © 6 sec is
1.6-1071° cm/sec?; this is substantially less than the quantity which can be

resolved at the present time.

If it is assumed that the FO force was caused by presence of an electric
charge g in a body with the mass m and the effect of an electrostatic field
with the strength E (1) = EO sin Qoah © the minimum electric charge [QJmin
which can be detected in a body with a mass of 1 g for the above-mentioned
7, W oy S 1.6-10717 CGSE, assuming that Ey = 102 CGSE (i.e., 30 kV/cm).

We recall that the electron charge is 4.8-10 10 CGSE.

After making a similar estimate of the detectable magnetic field strength
and the electric current intensity (it is convenient to use formula (3.25)
applicable to a magnetometer and galvanometer for this purpose), it is easy
to see that for these parameters as well, like for forces, charges, and
accelerations, there is an enormous unexploited resolution: 7-10 orders of
magnitude in comparison with that already attained. It is extremely important
to take into account the theoretically detectable quantities for forces,
accelerations, etc. in any discussion of the possibilities of carrying out

precise physical experiments. This discussion will be presented in greater

detail in Chapters 2 and 3.

In supplementing the above numerical example, we will evaluate the
conditions under which formulas (3.5) and (3.17) can be used. Substituting
[FO]min = 1.6+1071% dyne into the left-hand side of (1.15), and T = 103 sec,
m = 1 g-into the right-hand side of (1.15), we obtain t* = 2.5-1016 sec.
Thus, the estimates given above are correct if the relaxation time t* exceeds
2.5+101% sec. For a small sphere with the radius 1 cm and the mass 1 g at
T = 300 °K this is possible in an oxygen atmosphere only with a concentration

of molecules less than F = 20 cm™3. We recall that the t* values obtained
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until now in terrestrial laboratories for more massive bodies did not
exceed 10% sec. Thus, for attaining the response corresponding to formulas
(3.5) and (3.17) it is necessary either to be able to increase t* sharply
under terrestrial conditions, or else carry out experiments on orbiting

stations.

Now we will discuss the longer-range possibilities of increasing re-
sponse in experiments with test bodies. As is clear from the derivation of
formula (3.17), it is essentially a classical formula for a mechanical
oscillator (although it follows from the éxistence of fluctuations of
quantum origin in an optical source). The relation of uncertainties corres-
ponds to formula (3.11), from which it follows that in order to increase
response it is desireable to increase the initial amplitude of the
oscillations. After comparing (3.11) and (3.17), it can be concluded that the
only method for attaining the threshold determined by the relation of un-
certainty for a mechanical oscillator is a decrease in the A4 value. Such a /61
possibility theoretically exists in lasers with a sufficiently rigorous
limiting cycle. If we analyze well-known expressions for the spectral
density of fluctuations of amplitude M% (for example, see [25]), it can be
seen that with a sufficiently great rigor of the limiting cycle it is possible
to attain M% values less than Zhv/NO. However, until now present-day lasers
have A > 1. The development of a nonlinear optical system (by analogy with
the classical fluctuation dampers) will evidently make it possible to

decrease the 4 value.

Now we will briefly mention still another area of possible applicability
of experiments with test bodies in physical investigations. We will return
to the numerical example considered above. The force impulse #7 = 1.10713
dyne*sec can be registered in accordance with formula (3.17), provided that
= 1secl, 4 =10, ¢ = 2. Such an impulse

ech ~
is characteristic of an electron having an energy of 100 MeV. This means

it is assumed that m = 1 g, W

that at least in theory mechanical oscillators with small friction can serve
as detectors for registering high-energy elementary particles. It is
interesting to note that such a detector is not a ''virtually unstable system"
(D. I. Blokhintsev [30]) like many of the well-known detectors.
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In summarizing the examples and computations presented in this chapter,
it should be emphasized once again that there is an extremely great unex-~
ploited reserve of response in experiments with test bodies. The possibility
of employing this response reserve in different types of experimental investi-

gations will be discussed in greater detail in the sections which follow.
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CHAPTER 11 - /62

FUNDAMENTAL EXPERIMENTS WITH TEST BODIES

In selecting the material included in this chapter, the author gave
preference to experiments which have been made during recent years and which
play a substantial role for a number of fundamental physical concepts. On
the other hand, these experiments make it possible to judge the present-day
level of technology in this field of physical measurements. In performing
these experiments some interesting methods were used which can be useful to

experimenters.

In each of the three sections in this chapter, we analyze the possibili-
ties of increasing resolution in accordance with the theoretical concepts

concerning threshold response set forth in Chapter I.

§ 5. Checking the Equivalence Principle

The Equivalence Principle. A. Einstein noted (see review [31]) that in
his opinion further experimental refinement of the equivalence principle
(weak equivalence principle) is more important than new checkings of the
agreement between the computed and observed secular displacements of the
perihelion of Mercury and deflections of a light ray in the sun's gravity
field. The weak equivalence principle (constancy of the ratio of an inert
mass to a gravitational mass for different bodies) has been checked repeatedly.
The first check of this fundamental principle, later serving as the basis for
the general theory of relativity, was made by Newton. Later the correctness /63
of the weak equivalence principle was refined several times (Bessel, Eotvos,
Zeeman, Southerns). The most precise checking of this theory was made during
1959-1963 by Dicke, in collaboration with a group of colleagues. They
established that the relative difference in accelerations of free falling in
the sun's gravity field for two masses fabricated from aluminum and gold does
not exceed ~ 1:10° 11, This means that the relative difference in the

. . . o "11
min/mgrav ratio for aluminum and gold is also not greater than 1-10 [32].
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C)Sun

Earth

Figure 14

Now we will discuss in greater detail the method used in this experiment;
as will be clear from the text which follows, it is undoubtedly one of the
most precise and exhaustive of the investigations made during recent years.
Figure 14 is a block diagram of the apparatus. A triangular platform of
fused quartz was suspended on a fine quartz filament. Weights of approxi-
mately equal mass were attached to the ends; two of these were fabricated
from aluminum and one from gold. The earth, together with the apparatus, is
in a state of free fall in the sun's gravity field (~ 0.6 cm/sec?). As a
result of the earth's diurnal rotation, the possible difference in the
accelerations of aluminum and gold (if the weak equivalence principle is not /64
precisely satisfied) creates a periodic moment of force applied to the
platform. The period of change in this moment will be equal to one day. If
the sun is situated in the position a relative to the earth and if the
acceleration of aluminum is greater than for gold, the moment of force will be
directed counterclockwise., However, if the sun is in the position b, it will
be clockwise. Thus, this group of experimenters (in contrast to Eotvos!) had
to detect a small moment of force, changing with time in conformity to a

sinusoidal law, applied to the platform.

ago is described in detail in [22].
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Gold and aluminum are widely separated in the periodic table of ele-
ments. The ratio of the number of neutrons to the number of protons is
1.08 for aluminum and 1.5 for gold. Virtually all the electrons in the
aluminum atom are nonrelativistic, whereas for gold the mass of electrons
close to the nucleus is approximately 15% greater than for nonrelativistic
electrons. The relative mass defect for the gold nucleus differs substanti-

ally from the mass defect for an aluminum nucleus.

In order to attain a resolution in accelerations of mass of about
6-10 12 cm/sec?, it was necessary to create a sensitive system for detecting
small angles of rotation of the quartz platform. Its block diagram is shown
in Figure 15. One of the quartz platform surfaces served as a mirror. A
weak beam of light from the narrow slit of an optical collimator was
reflected from the mirror and illuminated a small oscillating wire. The lens
in front of the mirror made it possible to match the actual image of the
filament with the wire, whose oscillations occurred in the plane perpendicular
to the light flux direction. The light flux modulated in this way was
incident on the photomultiplier. The variable components of the photo-
multiplier current were amplified. The wire was swayed by an electric
voltage from a bridge generator at a frequency of 3 ke¢/sec. If the slit
image was symmetric relative to the oscillating wire, only the harmonic of
the frequency 3 kc/sec could be observed at the photomultiplier output. Small
platform rotations resulted in a displacement of the slit image relative to /66
the wire and the appearance at the photomultiplier output of a variable
current with a frequency equal to the frequency of wire oscillations and with
an amplitude proportional to the image displacement, and therefore proportional
to the platform angle of rotation. The phase of this electric voltage was
dependent on the rotation direction. After passing through a narrow-band
amplifier, also tuned to a frequency 3 kc/sec, the electric signal from the
photomultiplier was fed to one of the phase detector inputs. An electric
voltage from the bridge generator was fed to its other input, after amplifi-
cation and phase correction. Thus, the constant voltage at the phase
detector output was proportional to the platform angle of rotation and the

sign was determined by the rotation direction. Then, after filtering, the
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electric voltage was fed to an automatic tape recorder. This apparatus

could measure an amplitude of platform angular displacements of & 1:10 2 rad
at a frequency corresponding to the period of the earth's rotation. We note
that the resolution attained at such a low frequency approximately corresponds
to the record resolution obtained by Jones using a special optical lever

(for further details, see Appendix). For a period of characteristic pendulum
platform oscillations of about 400 sec this angular resolution corresponds to
an amplitude of acceleration of the ends of the platform approximately equal
to 6+10 12 cm/sec?, or its equivalent, measurement of the relative difference
in accelerations of the platform ends of 1+.107!! relative to acceleration

in the sun's gravity field (0.6 cm/sec?).

Electrodes in feed- {— { R . .
back circuit | Mirror W {OPtlcalf Indi-
5 _I_M =05uF L ~ | scétaolrl %is_
T | placements
B = T P
_____ |

Preamp- Bridge
lifier P g-enégr-
ator 3 kd/sec

Oscillating

I wire
Potentiometer 200x
controlled by L

motor R = .__{_____._'L____l
artow- arrow~ ;|
and am and amy |
plifier, plifier |
i3 Rc/sec 3 ke/ske
Phase Phase |

detectorj=— inverter

!

Automati II
tape re- | d-c am-| |
corder ; plifier !
I I
b ———— b LT |

Filter Amplification Unit
Figure 15
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The electric signal from the phase detector output was not fed to an
automatic recorder, but to a feedback circuit, which introduced damping into
the torsional oscillations of the platform and slightly decreased the period
of characteristic oscillations (see Figure 15). The force introducing
attenuation into platform motion was created by the Coulomb attraction of one
of the masses attached on the platform to two electrodes connected through a
filter to the phase detector output. The magnitude of the introduced damping
could be regulated by a remote potentiometer, controlled by a motor. The use
of this method was dictated by the following important circumstance. If the
system for detecting small platform rotations reproduces them strictly
linearly on an automatic recorder, there is no need to introduce damping.
However, if normal mechanical modes of oscillations of the torsional pehdulum
are excited in some way, the presence of nonlinearity in the registry system
leads to an apparent appearance of a low-frequency signal whose period will
be approximately equal to the damping time of these modes. However, the
damping time for the fundamental torsional mode, in Dicke's opinion, could
attain two years. Accordingly, any seismic interference which is localized
in time, with the presence of nonlinearity in the detection system, could be
detected as the appearance of a moment of force caused by the difference in

accelerations of the aluminum and gold masses.

We will enumerate a number of other methods used by the author of this

experiment:

1. In order to attenuate the possible effects of gravitational pertur-
bation introduced by the observer's mass, three test masses were used; this
considerably decreased the quadrupole moment of masses. In the experiments
by Eotvos only two masses were employed; Dicke feels that the observer must
introduce a gravitational perturbation at the level of the attained sensi-

tivity.

2. For this same purpose all the measurements were made by remote

control.

57

/67



3. The elimination of the convection effect near the test masses
and the platform was achieved by placing the entire apparatus in an evacuated

housing (vacuum ~ 10" % mm Hg).

4. 1In order to decrease temperature fluctuations, the entire apparatus
was placed in a shaft 3.6 m deep; this was covered with a thermal "plug"
1.2 m high. The measurements were made without opening the '"plug' for months.
At the same time, remote measurements were made and a continuous record of

the temperature change at different points on the housing was kept.

5. The pendulum was fabricated from nonmagnetic materials, in such a

way as to eliminate the force effect of daily variations in the earth's

magnetic field.

6. Fused quartz, covered with a thin layer of aluminum, was used as the
suspension filament; this made it possible to ground the platform and weights.
In addition, the steplike drift of the quartz filament was considerably less
than for tungsten filaments used in the first Dicke series of experiments

[32].

7. The rotation of the torsional pendulum was recorded automatically
and continuously, and discrimination of a signal with a diurnal period was

accomplished using an electronic computer.

Now we will summarize the results. Evidently, the most important result
of the experiment must be considered the following: the authors were able
to extend the limit to which the weak equibalence principle is satisfied from
5-10-9 (the resolution attained by Eotvos) to 1.10-1l; in other words, the accu-
racy was increased by a factor of 500. However, evidently for the most part due
to the presence of a significant nonlinearity in the registry system, it was not

possible to attain a resolution corresponding to Brownian fluctuations.

If one takes into account the period of pendulum oscillations (400 sec),
the time spent on the measurement (several months), as well as the masses of
the test bodies (a few grams), it is easy to compute the resolution level
which can be attained in this sort of experiment under terrestrial conditions,
assuming that the only source of fluctuations is thermal. Assuming the

relaxation time to be equal approximately to the period of oscillations
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Ty it is easy to find (see 5 1) that when Tmeas = 107 sec it would be
possible to detect a difference in the accelerations of test masses of about
1-107!3 cm/sec?, i.e., while retaining the Dicke method, make more precise
(or refute) the weak equivalence principle at the level about 1.10713,
However, if large t* values are used (see expression (1.15)), which can be
obtained using thin quartz filaments in a vacuum, in terrestrial laboratories

it would be possible to advance the limit by still another order of magnitude.

We note still another important circumstance. The seismic interference
which substantially hindered the experiment described above is not noise
in the usual sense, since it is completely determined (it can be measured
simultaneously and independently); accordingly, in the case of a detector of

sufficiently high quality, it can be completely excluded from consideration.

Now we will estimate the theoretically attainable level of resolution
when checking the weak equivalence principle in experiments with test bodies.
In this evaluation we will use formula (3.17). Dividing the right- and left- /69
hand sides by the mass m of the test body, we obtain an expression for the
minimum amplitude of the detectable acceleration [aO]min:

2 1/ Fo mech
e e 5.1

We recall that W ooty is the characteristic frequency of a mechanical oscil-
lator, 4 is a dimensionless factor characterizing statistical fluctuations at
the source, r is a factor of the order of several units, dependent on the
level of detection reliability, T is the duration of the effect, having the
form of a sinusoidal train with a frequency Wrooh Formula (5.1), 1like
(3.17), is correct only in the case of optimum tuning of the optical detector,
being the only source of a fluctuation effect on the test mass. Assuming in
(5.1) that o _ . = 2m+1075 sec”! (about the frequency corresponding to the
earth's period), m = 103 g, T = 107 sec (i.e., approximately the same as in
the Dicke experiments), 4 = 10, ¢ = 2, we obtain [aO]min = 110723 cm/sec?.
If the experiment is carried out in accordance with the Dicke method and the

accelerations of two masses are compared in the solar gravity field
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(@ = 0.6 cm/sec?), it would be possible to check the equivalence principle
to a relative accuracy about 1-10723, It is interesting to note that in this
way it is possible to attain a resolution at least at the level of the

dimensionless weak correlation constant:

m ic 2 . ot
(~ﬁf—) = 3.1077, (5.2)

where m. is the pion mass, y is the gravitational cohstant.

It is important to note that at theé present time there are no theoretical
premises which would indicate the existence of any thréshold level below which

the weak equivalence principle could cease to be satisfied.

In concluding this section, we will discuss a variant of an experiment
for checking the weak equivalence principle in space on a low-flying earth
satellite. We will assume that we have an earth satellite in a nearly
circular orbit (Figure 16). Assume that the satellite has the shape of 4
thin toroid with the radius r, whose two halves my and m, are fabricated from
different substances (similar to the choice in the Dicke experiment). We will
also assume that my = my . If the
plane of the toroid coincides with the
orbital plane and the period of
rotation is equal to the period of
satellite revolution arcund the earth,
provided that the weak equivalence
principle is precisely satisfied, the
extension of the line gb at the
satellite should always be directed
toward the center of the earth.
However, if it is only approximately

satisfied and there is a small differ-

ence Aag in the accelerations m1 and

my s during the time T the satellite

rotates by an angle A, equal to:
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A 3
Ap ~ 2:: . (5.3)
Assuming that Aa = 3+10 !2 cm/sec?, T = 2:105 sec (about 2.3 days), » = 5 cm,

we obtain A¢ = 410 3 rad = 0.24°, an easily measureable value. Expréssion
(5.3) is correct only for small A¢. If the satellite orbit is situated at a
relatively low altitude from the earth's surface (about 1,000 km), the
gravitational acceleration is gg = 7-102 cm/sec?, and in accordance with this
estimate, it would be possible to check the equivalence principle with an

accuracy to Aa/gg = 5.10715,

Now we will briefly list the principal requireméents whose satisfaction
is necessary for attaining such an accuracy. In order for expression (5.3)
to be satisfied (when Aa # 0) and A¢ to increase quadratically with time, it

is necessary to satisfy the inequality T << t,, where 0 is thé period of

>
characteristic oscillations of the satellite gn the earth's nonuniform
gravity field. The period of oscillations will be finite, provided that the
quadrupole moment of masses of the toroid is nonzero. Assuming a nonuniform-
ity in the distribution of mass in the toroid, equal to Am/m, it is easy to
obtain

T ~ D /~ — —_]—g_ﬁ—_
o & 243 ] Am ‘J,'rMG !

ne

(5.4)

where R is the distance from the satellite to the center of the earth, vy is
the gravitational constant, M is the earth's mass. If Am/m = 11075,

R = 7+10% cm, then Ty = 1.3-10°% sec, which does not contradict the condition
T << T for the above-mentioned estimate.

Geometrical inaccuracy in fabricating the toroid can have the following
result: the light pressure of solar radiation will impart to the toroid an
acceleration which can simulate impairment of the weak equivalence principle.
If it is assumed that the total mass of the toroid is about 10* g and the
reflection coefficient for its surface is about 0.9, then with an inaccuracy

in fabricating its surface of As/s about 10 °, the linear acceleration of the
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toroid caused by solar pressure will be about 1-10713 cm/sec?, i.e., less

than the estimate given above by an order of magnitude,

Strong equivalence principle. The independence of the laws of physics

on the presence or absence of a uniform gravity field is usually called the
strong equivalence principle. This principle has not been subjected to
serious experimental checking. Dabbs, in collaboration with a group of
colleagues [33], carried out an experiment for measuring the acceleration of
free falling gy of a beam of neutrons initially directed horizontally in the
earth's gravity field. It was established in this experiment that the
difference in Ag values for different neutron spin orientations, if it exists,

does not exceed the relative value Ag/g6 = 14102,

Morgan and Peres [34] demonstrated that the absence of an influence of
nuclear spin orientation on the level of mass defect in experiments of the
Eotvos-Dicke type should serve as confirmation of the strong equivalence

principle. Since dynamic methods have now been successfully developed for
orientation of nuclei, making it possible to have 60-70% of the nuclei

oriented in a selected direction [35], the accuracy in checking the strong /72

equivalence principle can evidently be the same as for the weak equivalence

principle, provided the proposal of Morgan and Peres is adopted.

L. I. Slabkiy, V. K. Martynov, and the author [36] undertook an experi-
ment to determine the upper limit of the possible influence of nuclear spin
orientation on the weight of a test body. We established the absence of such
an influence, at least at the level 610 10 (for further details see [36]).

In the experiments we employed the method of discriminating a signal from
noise as described in § 1. The relatively low resolution was entirely
determined by the degree of uniformity of the magnetic field used in orienting

the nuclei.

§ 6. Quantum Macroscopic Effects

Relatively recently so-called quantum macroscopic effects were predicted
and discovered: formation of vortical filaments in superfluid helium (Winen
[37)) and quantizing of the magnetic flux in hollow superconducting cylinders

(Deaver, Fairbank [38], Doll and Nabauer [39], also see the review [40]).
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Now we will discuss the method employed by Doll and Nabauer for
investigating the possible strength of the magnetic flux in a small super-
conducting cylinder. The essence of this phenomenon is as follows. The
magnetic flux creafed by a field current through the inner cavity of the

cylinder is quantized:

9 i
D = ﬂ{f'l}:(]'0n=7~ll, (6_1)

where ¢ is the magnetic flux, B is the field within a cylinder whose internal
radius is R, e is the electron charge, ¢ is the speed of light. The parameter

n assumes only a whole-number value: n = 0; + 1; * 2,... The numerical value

of the "magnetic flux quantum" is ¢, 2.06-10"7 gaussecm?. In order for the
field value B to be comparable ta the earth's field and in order thereby to
avoid local magnetic field fluctuations near the apparatus, Doll and

Nabauer used a cylinder with a small internal cross section.

Figure 17 is a diagram of the experiment. A lead cylinder with the /73
length Z = 6+10°2 cm was sprayed on a quartz rod 10 um in diameter. The rod was
suspended horizontally on a torsional suspension in such a way that its axis was
directed perpendicular to the
magnetic field created by the
coil Dl' A sensitive optical
indicator made it possible to
register the small torsional

pendulum oscillations.

If within the cylinder the
flux is Qy’ and the coil field
D. is equal to Bx’ the moment of

1
force applied to the cylinder is

Figure 17

O B
Mom J7 == S (6.2)

A
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In the experiment the magnetic field Bx was 10 oe. With @y =
2.06+10"7 gauss+cm? and 7 = 6+10°2 cm it was therefore necessary to measure

a moment of force of about 11078 dyne-cm. The sequence of measurements was

as follows:

a) The lead cylinder was heated to a temperature above the critical
temperature for lead, after which the coil D2 was cut in, creating a perma-

nent magnetic field Bx along the cylinder axis.

b) The temperature was reduced below the critical value and then the

coil D2 was cut out. Thus, some magnetic flux & was ''frozen'" in the lead

cylinder.

¢) The coil D1 was cut in for measuring the strength of this flux; the /74
coil created a magnetic field B, = 10 oe in the neighborhood of the pendulum.
This caused the appearance of a torsional moment (6.2), applied to the

pendulum. The field in the coil D, was reversed automatically in rhythm with

the oscillations. Thus, the frequincy of the variable moment was precisely
equal to the resonance frequency!. The strength of the magnetic flux frozen
in the lead cylinder was determined from the transient amplitude of the
oscillations. Then the pendulum was heated to a temperature above the
critical value and the procedure described above was repeated, but with a

different field By'

It was found from these measurements that when the field B 1is less than
0.1 oe the magnetic flux within the cylinder is equal to zero; when the By /75
field is from 0.1 oe to about 0.2 oe the magnetic flux remains constant, and
then increases in a jump (Figure 18). The magnitude of the field flux '"step"
agreed well with (6.1) (relative error of about 20%). It can
be seen from the above that the experiment carried out by Doll and Nabauer

should be included in the group of experiments with test bodies.

1 1t is interesting to note that this same method for automatic frequency
trim was used in the classical study by Einstein and de Haas [41].
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Now we will estimate
the strength of the minimum
frozen-in flux [Q]min or the
flux increment which can be

4t /’/‘ detected in such an experi-
ment when using optimum.

3+ °i;/ﬂ° conditions. We will assume

/ that the only source of a

2+ /S fluctuation effect is an

w0 0P ° optimally tuned optical

T ;r indicator. By equating the

/ expression for the minimum

— detectable moment (3.25) to

“ ‘ the moment of force in the

/ +4 experiment conducted by Doll

and Nabauer (2.6), we obtain
Figure 18

[

K- oo s -
(D min Cﬁ% l/ﬁ“’mech/"‘a (6.3)

where T is the duration of the sinusoidal train, inducing the superconducting

cylinder with the moment of inertia I and the characteristic frequency Qoo

into resonance. If in (6.3) it is assumed that B = 10 oe, 7 = 6102 cm,

I =5:10"11g-cm? (data from the experiment by Doll and Nabauer), T = 103 sec,

w
mech

almost 13 orders of magnitude less than ¢0 = 2.06+10 7 gauss+-cm?. Thus, there

can be a more detailed checking of the discovered quantum macroscopic effect

=1 sec !, 4 =102, £ = 2, then [Qy]min = 5-10 20 gauss-cm?, i.e.,

while in general employing the experimental method described above.

It should be noted in conclusion that quantum macroscopic effects are
evidently not limited to the two cases considered above. In a certain sense,
formulas (3.17) and (3.25) must also be regarded as quantum limitations in
macroscopic experiments. We can note the existence of other quantum macro-

scopic effects, in particular, those associated with experiments with test
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bodies. For example, it is easy to see that a macroscopic mechanical
oscillator to a certain degree will not interact during the time T with an
optical indicator if the initial amplitude of its oscillations xin'is less

than

R
'xO:ﬁcl//anﬂ , (6.4)

where NO is the intensity of the flux incident on it, Vo is the mean frequency
of optical radiation, ¢ is the speed of light. When L., <X, the light
pressure fluctuations should impart through the oscillator an energy less than

h@mech'

obtain zy = 110712 ¢m,

Assuming that N, = 1 erg/sec, Vo = 5.101% sec™l, T = 103 sec, we

§ 7. Search for Elementary Particles With a Fractional Electric Charge

As is well known, the unit of an electric charge is e = 4.80298-10 10
CGSE. The charge of any body can vary only discretely by this value. This
fundamental circumstance, which became known after the classical experiments
by Millikan, who measured the charge of an electron, has been repeatedly
checked. In particular, the equality in absolute magnitude of the electron
and proton charges has been checked [42]. The result of this experiment

confirmed the equality of charges with a high accuracy.

We note that the discreteness and equidistance of electric charges, as
well as the absence of a '"finer charge substructure', is an empirical law
which is not mandatory from the point of view of the law of conservation of

charge

{0

\TE-*.LﬁVj::(U.
A burst of interest appeared in this fundamental problem in connection with
the hypothesis formulated by Gell-Mann and Zweig [43, 44] concerning the
existence of superelementary particles, so-called quarks, which should have

an electric charge fractional relative to e (for different varieties of quarks

the charge should be *# 1/3 ¢ and + 2/3 &).
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The Gell-Mann -- Zweig hypothesis found indirect confirmation in the /77
discovery of Q -particles. According to this hypothesis, at least one of the
"varieties'" of quarks should be stable. On the basis of the '"hot universe"
theory it was found possible (Ya. B. Zel'dovich [45]) to obtain a mean
estimate at the present time of the distribution of relict quarks. The
distribution level should be about 10 !9-1071! quark per nucleon. However,
this estimate is an average for the universe, and it is not impossible that
there are accumulations of relict quarks in individual regions of the universe
or in substances with a certain composition. Thus, an urgent need arose for
repeating the Millikan experiments, or experiments close to them, in order to
detect rare stable particles with a charge of 1/3 ¢ or 2/3 e. Such experiments
were carried out by G. Gallinaro and G. Morpurgo [46] at the University of
Genoa, and also at Moscow University (Ya. B. Zel'dovich, L. S. Korniyenko,

V. K. Martynov, V. V. Migulin, S. S. Poloskov and V. B. Braginskiy [47-49]).

Below we will describe the experiments carried out at Moscow University,
which are of interest in connection with the above-mentioned fundamental
problem (and not in relation to the fundamental nature of the result) and
also because these experiments can be regarded as an illustration of the

development of a sensitive electrometer.

In the search for stable relict quarks in solid bodies it is possible to
use a modification of the Millikan method. It was desirable to determine
the minimum charge (less than the electron charge) for a test body whose mass
was several orders of magnitude greater than the mass of droplets in the
Millikan experiments, since in the latter the number of nucleons in a drop
was 1012-1013, However, the increase in test body mass by several
orders of magnitude did not make it possible to retain the Millikan method in
pure form, since in order to hold the drops in the earth's gravity field, it
was already necessary to have an electric field strength of about 5 kV/cm.
Accordingly, it was necessary to suspend the test body either by using a
servosystem (ferromagnetic body), or using a Braunbeck suspension [50]
(strong diamagnetic), which Gallinaro, Morpurgo, et al. propose for use in /78
searching for quarks. The test body, suspended in a magnetic potential well,

will be displaced relative to the position of equilibrium if the potential
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well is in an electric field and if the body is charged. This displace-
ment, proportional to the charge, if it has a low absolute value, changes
discretely with a change in the charge by one or a few electron charges.
The presence of a quark in the body should have the following effect: in
place of possible charges (..., - 2, - 1, + 1, + 2, ...) e, one should
observe charges (..., - 21/5, - 11/5, = /3, + 2/3, + 12/5,...) e, or
ooy = 1275, = 2/, + 175+ 1175, e,

Thus, instead of measuring the time of motion of droplets in the field
of an electric capacitor, as was done by Millikan, it was necessary to
investigate the distribution function of displacements of a test body
relative to the position of equilibrium in the potential well. In addition,
it was necessary to have sufficiently small displacements which would be

linearly dependent on the charge magnitude.

Figure 19 shows /79

a schematic diagram

of the central part
Source of p

~X-radiation of the apparatus
Capacitor ‘ used in making the
plates ///Photoplate measurements [47,

or screen

48] . The test body
~10bjective r was a il c
e T —— ; particle o

P Lii//c graphite (diamagnetic)
S z and the body was

situated near the

{ Graphite .
30urée of.particle Electromagnet section between the
optical pole flat poles of an
radiation electromagnet. Near
Figure 19 the section, the

field, decreasing
sharply in the z direction, creates a force which is directed upward for the
diamagnetic (graphite)

R
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compensating the particle weight. The magnetic field strength near the
section varied from 1.8-10% to 1.2.10"% oe for different particles. The
gap between the poles was about 5 mm. In the upper part of the electro-
magnetic poles there was a recess which ensured stability of the particle
in the y direction. The particle is illuminated by a stabilized source of
optical radiation. An objective makes it possible to obtain a persistent

image of the particle on a screen (90-fold linear magnification).

In the gap between the electromagnet poles there are two well-insulated
parallel plates of an electric capacitor. Thus, the direction of the
electric field in the neighborhood of the particle coincides with the mag-
netic field direction. The equilibrium position of the particle under the
joint influence of both fields and the small particle charges is linearly
dependent on the charge magnitude g, assuming the same electric field strength
E.

In the first series of measurements [47, 48], the volume around the
particle was not evacuated and the plates were fed a constant electric voltage.
In place of a screen, the authors used a photographic film and registered the
difference in particle displacements with a change in voltage polarity. This
excluded the possible effect of the force V E%;-(interaction of the induced
dipole moment and a nonuniform electric field), changing quadratically with
the field E. The .particle charge q was varied using a weak current of ions
in the air, obtained by exposure to the electric field and weak X-radiation

(this same method was employed by Millikan).

Figure 20 (upper part) shows the distribution function for quasistatic /81
displacements 2 of a particle having the mass 9:10 ° g in an electric field
E = 1.5 kV/cm. There are six clearly visible equidistant maxima, the distance
between which (about 5:10 “* cm) corresponds to a change in the particle
charge for e¢. The mean charge at the zero maximum is statistically indis-
tinguishable from zero: ¢ = 0.00 = 0.11 e, with a reliability of 0.99.
(The statistical processing of these measurements has been described in
detail in [47].) Figure 20 shows that the particle charge varied from + 2 e
to - 3 e. The scatter of particle displacements was caused by Brownian

motion. Accordingly, the points corresponding to different charges are
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denoted in the figure by different symbols (crosses, circles, etc.).

The

lower part of Figure 20 shows a record of this same particle in time,

averaged for 8 displacements (the time axis is directed downward).
g P 8

deviations of displacements from the mean do not overlap.

For

xg the Brownian fluctuations are expressed to a lesser degree and the

We can clearly see

the discrete change in the position of equilibrium for the particle, as well

as the temporal repetition of the same charges (+ 1 e and - 2 e).
R denotes the times when the X-radiation source was operative.

obtain such a distribution function it is necessary that = =

The letter
In order to

104 sec,

~

meas

* " l
Uy ez |
: S s--0szs sl
. sele ‘ LR Reld -4
. . sole x g 48107 cm
- . k - —_—
a=-J36 M :Ik Yies E=vll6
. . I PEEES
. . ol xla \4
H esss telee ‘;‘::: [
1 eebee rales R i
:: sebee ‘.:‘. .5..-. o
L4 +4is s 0 o u LY
N : Pakee ¥ R 2
4 ja ese + dajrt e po o xoxax »jo o
s qa see « dap e 00 axdnann o o
4 qs e LRl e o0 Lo P A oo
& aa s ter e co08bs0 xuofxxan nnlun
‘:A:. e ““l:" ccoboo Xk kNN cnllﬂn
al 4 ew e LI R ++ 0 0% o o
4aaa soes +¢a¢t¢¢4o 9o o:zo ::q:::: an::'::
a4 s a a oo s e LRI 3 + 4+ 40 L
P cess erisiibiiisicooposse aaxdinsia beatll.S
assana vescosessessvbhisrs00c00 000 .xxnAdaxxxr vaobofononeo
AAs a2arsona -cn-....;sr:..o»4‘4¢ocxao»- ...vfona-u vu:ﬂn:nnnnnn ° z
yry t . i ¢ (. { P —
=40 1 =d N ~10i J 10 0 Z,
e ——r -4 — % ¥
+ + e H
[ROS — 1 e o ._I_ 1
i i 'd: ‘r__ T T T
T T % 1 h e
. H P . i — T
; { W) 1R 1 ]
-— s [ I ] L L= T
; ; ' N ¢ S s S
_— ——— 1 | ° i
— , , S e Ep————
i : e s E— -
- - I . ®n ]
—— e e e —
x = T B - 1" a]
S —— i ' ' m—
DR ] A V' _ R )
i : I 1Z - -
| e e 1 Vi o i T -
— X : T
L t _—t — -
U T < S ————— b o
Jt _l‘_il_“_ 1 ——— —_—
Figure 20

A possible source of

particle may have a static dipole moment D, interacting with the nonuniform

electric field (aE&/Bx # 0). This can result in the simplation of a fractional
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charge. It was found that some particles of pure graphite and graphite with
added impurities have a dipole moment Dx n 5:10°° CGSE (this corresponds to a
potential difference of about 1 V on the particle surface). In order to
eliminate this parasitic effect, the electric capacitor plates were carefully
inserted parallel to one another (parallelism not worse than 7-8 u at a
distance of 10 cm); in addition, measures were taken for precluding the
falling of graphite dust on the capacitor plates near the particle position

of equilibrium (for further details see [47]).

In the first series of measurements (with the sums of masses of all
particles taken into account), it was demonstrated that no quarks were
present at the level of occurrence 1:10 17 quark per nucleon. A solution of /82
a stony meteorite, as well as dry residue from the slow evaporation of a
great quantity of water, was added to the graphite (in this procedure there
might be an "enrichment' with quarks and accordingly the estimated limit for

occurrence of quarks in water was about 10 22 quark per nucleon).

In the described apparatus, as mentioned above, the time of measurement
with one particle was Teas ° 1-10% sec; the relaxation time due to the
presence of air was T1* = 1 sec. Thus, the conditions for measuring the force

e
F_ =%

x 3
from optimum. In the second series of measurements [49], changes were made

E, whose effect on a particle was to be determined, were extremely far

in the apparatus. The volume near the particle was evacuated (vacuum about
1-1072 mm Hg). As a result, the quality of the particle for oscillations in
the direction of the electric lines of force attained @ = 102. With a fore-
vacuum it was possible to change the particle charge by use of a weak glow
discharge. Instead of a photographic film, a photoelectric converter was
placed in the screen plane; the signal at the output of this converter was
proportional to the particle displacement. Due to the relatively high quality
of particle oscillations it was convenient to replace the quasistatic electric
voltage across the capacitor plates by a variable electric voltage with a
frequency equal to the frequency of characteristic oscillations of the
particle in the a direction (wx = 2m+7 sec 1). The particle oscillations were
registered on the tape of a loop oscillograph, and then the record was sub-

jected to statistical processing, similar to the synchronous rectification
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operation. This made it possible to retain the signal-to-noise ratio the

same as in the first series (confidence interval about 0.1 ¢), increasing

the particle mass on the average by a factor of 7, and reducing the measure-

ment time with one particle to 102 sec. Salts of a solution of marine

concretions in fluoric acid, or the precipitate from evaporation of a great
quantity of water, were added to some of the 30 particles (mean mass about

1.2-1077 g) which were measutred, as in the first series. In not one of these
particles was it possible to detect the presence of fractional charges. The /83
charge which was minimum in absolute value did not differ statistically from

zero, and the mean confidence interval when measuring the charge was 0.093 e

(at the confidence level 0.99).

Thus, the second series of méasurements made it possible to reduce the
upper limit of possible occurrence of relict quarks in solid bodies to 10 18
per nucleon (taking into account possible enrichment due to the evaporation of

water to 10~23 per nucleon).

In the experiments by Gallinaro, Morpurgo, et al. [46], a negative result
was also obtained. The method in this experiment was similar to that
described above. However, the capacitor plates were arranged (see Figure 19)
in such a way that the electric field Z was directed along the y axis. This
made possible a substantial increase in the particle displacement with a
change in g by one electron, since the rigidity in the potential well in the
y direction was less than in the x direction. However, the lesser size of
the capacitor plates, as a result of such an orientation, considerably
increases the possible BEy/By value, and therefore, due to the above-mentioned
parasitic effect sets a more rigorous limit for particle mass. In this
experiment the particle mass was two orders of magnitude less than in the

second series of our measurements.

Both described experiments were of a purposeful nature: an attempt was
made to detect the existence of rare relict quarks in a solid body. Accord-
ingly, it was desirable, while retaining a resolution of about 0.1 e
{(confidence interval), to have a test body of the greatest possible mass.

It is clear that other experimental variants can be carried out. For example,

one could attempt to find rare stable particles with a charge such as 1:10 3 e
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using a similar apparatus. This would require a decrease in the mass of
the test bodies by approximately three orders of magnitude. However, ho
theoretical premises, such as the Gell-Mann — Zweig hypothesis, yet exist

for such a search.

In § 4 we presented an estimate of the minimum charge [q] which can

min
be detected in a body with the mass m when it is acted upon by a force gF
under optimum conditions. For E = 102 CGSE (30 kV/cm), m = 1 g, T = 1-103 sec
and w = 1 sec’ ! a value [q]_. = 1.6-1017 CGSE = 3-10"8 e was obtained.
mech min

Thus, in these experiments with test bodies there is a great reserve of

sensitivity.

We note in conclusion that a certain caution must evidently be exercised
with respect to thé lower limit of possible occurrence of quarks obtained in
[51], since the authors of [51] used an "enrichmerit method" which with
certain assumptions concerning the properties of quarks could lead to an

impoverishment of the substances subjected to investigation.
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CHAPTER III /85

PROSPECTS FOR CARRYING OUT GRAVITATIONAL AND NUCLEAR
EXPERIMENTS WITH TEST BODIES

Relativistic gravitational experiments occupy a special place in experi-
mental physics. The unusual difficulty in carrying them out, together with
the smallness of the gravitational constant, on the one hand, and the real
need for a theory in conducting these experiments are attracting the attention
of many researchers, and this has led to numerous proposals for formulating
experiments. The relatively vigorous development of relativistic gravi-
tational theory, especially during the last decade, has led to a situation
which is anamolous in comparison with other branches of physics: researchers
can not "contend" with the effects which were essentially predicted more than
40 years ago. There is a certain justification for this situation because for
those masses which the experimenter has at his disposal in the laboratory, the
effects predicted by the general theory of relativity are unusually small, and
as will be demonstrated hereafter, many of them can be detected only near the
threshold of limiting sensitivity, from which experimenters today are separated
by 7 to 10 orders of magnitude. Another possible factor is that at first
glance the effects predicted by the general theory of relativity have no
practical application because they lead only to small additions to the non-
relativistic Newtonian description of the motion of artificial space bodies,
and photon rockets are still largely in the realm of science fiction /86
writers. The recently appearing investigations relating the structure of
elementary particles and masses collapsing to the Planck elementary length
(planckeons—maximons [52]) in general do not exclude the possibility of

existence of great energies of gravitational origin in elementary particles.

We now know of the results of three fundamental experiments which confirm
the general theory of relativity. These include the rotations of the
perihelion of Mercury, the red-blue shift in the frequency of electro.agnetic
radiation in the earth's gravity field, and the deflection of the optical
radiation of stars in the sun's gravity field. It should be noted that in the

numerous repetitions of the third experiment it was not possible to obtain a
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high measurement accuracy and accordingly it was impossible to obtain a good
correspondence between the results and the predictions which follow from the

general theory of relativity (see review [53]).

In Chapter III we will discuss the possibilities of detecting some new
relativistic gravitational effects involving experiments with test bodies
(88 8 and 9). This chapter will also include a brief discussion of two
nuclear experiments for the detection of small forces and the moments of

forces applied to macroscopic bodies.

§ 8. Problem of Detecting Gravitational Radiation.

It has been known for more than 40 years that in the case of a weak
gravitational field the Einstein equations are similar to the wave equations

for the electromagnetic field [54]
@y = — 071 pe
BT T AT (8.1)

with the additional condition ¢: v = 0. In equation (8.1)

>
@D =) 1 5Y B2
1y, = &l“—T(le7

where hﬁ is a small value of the first order of magnitude characterizing

the curvature of the metrics of space Iy = duv + huv’ T: is the energy- /87
momentum tensor; y is the gravitational constant; ¢ is the speed of 1light.
These equations, as in the Maxwellian equations, have a solution in the form

of waves propagating with the same velocity as electromagnetic waves. However,
only during recent years has there been discussion in the literature concern-
ing the possibility of detecting gravitational radiation. It is difficult to
detect gravitational waves: a) due to the smallness of the gravitational
constant y, and b) because the ratio of the gravitational mass (gravitational
charge) to an inert mass is a constant value for any bodies (see § 5). Due to
the second circumstance, the variable motion of masses can lead only to
quadrupole radiation of gravitational waves. For example, the energy loss in

gravitational radiation by some system of masses when v/c << 1 is equal to
[54]
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'idg' = «2ng (Dap)?,. (8.2)

where Da is a component of the tensor of quadrupole moment of masses

B

Dup = p(3aa? — 8,72y v, (8.3)
"f

Here p is density, V is volume. Expression (8.2) for the intensity of gravi-

tational radiation with an accuracy to the numerical factor coincides with

the similar expression in electrodynamics for the intensity of quadrupole

electromagnetic radiation

dé

aw ™ e (Das) (8.4)

if in this expression vy u is replaced by the density p of electric charges.

Thus, in an attempt to carry out experiments for detecting gravitational
radiation the situation is approximately the same as in electrodynamics, but
the experimenter will have at his disposal only gravitational charges (gravi-
tational masses) of one sign with the same ratio of the gravitational charge
(gravitational mass) to the inert mass. Accordingly, possible forces and
detectors can only be of the quadrupole type, and therefore extremely in-
effective. In addition, the specific gravitational charge is extremely small
(for an electron /yhgrav/min = vy is less than e/%%n by ~ 1021). Gravi-
tational radiation is visualized as a field detached from nonuniformly moving
masses; this field decreases with distance from the source as r 1, provided
the distance r is much greater than the wavelength. In other words, as in
the case of electromagnetic radiation, here we can discriminate a wave zone
in which the change in the metrics of space is propagated with a velocity
equal to the speed of light and decreases as r !, and a nonwave zone in which

the field can be computed approximately using Newton's law.
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In addition to the continuous improvement in experimental equipment,
an objective basis for the new interest in carrying out experiments for
detecting gravitational radiation is evidently the relatively recent develop-
ment of statistical methods for discriminating a weak signal from noise with
the optimum use of preliminary information on the signal. This section gives
data on different possible forces of gravitational radiation, discusses the
attainable response of detectors on the basis of expressions derived in
Chapter II, and gives the preliminary results of some experiments which make
it possible to estimate the upper limit of the level of gravitational

radiation of extraterrestrial origin.

Sources of Gravitational Radiation

Binaries. Binary stars with a small period of rotation are the most
reliable sources of gravitational radiation of extraterrestrial origin. These
forces are virtually constant for the terrestrial observer, and therefore in
an attempt to detect their radiation it is possible to achieve a prolonged
discrimination of the signal from the noise during correlated reception,
taking advantage of the circumstance that the radiation is rigorously
synchronous with the rotation of the binary components, which can be optically /89
observed. In the case of a system of two stars moving in circular orbits and
having the masses my and m, and the rotation frequency w, the intensity of
gravitational radiation can be computed using formula (8.2); for this case

the formula assumes the form

s TRVLAPT L
Y @27 mimsm

(b (8.5)

As can be seen from (8.5), binary stars with a great mass, small period of
rotation, and situated relatively close to the terrestrial observer are of
interest as intensive forces of gravitational radiation. Table 4 gives data
on the intensity of gravitational radiation for six binaries situated relative-
ly close to the solar system. This same table gives the period of rotation

the masses m, and m, in units of solar mass, the distance L to these

T
rot’ 1 2
stars from the earth, and the density ¢ of the flux of gravitational
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radiation near the earth. The factor 4 can vary from O to several units,
depending on the orientation of the rotation plane of these stars relative

to the earth. The first five stars in this table are eclipsing binaries

(see the Kopal catalogue [55]), whereas the last star WZ in the constellation
Sagitta has a uniquely small period of rotation (81 minutes). The total
intensity flux of gravitational radiation from this star possibly exceeds the

intensity of optical radiation [56].

TABLE 4

— . - o WUCSIC LR R

Trééj dé e J Al o W

Star avs | M1 ™2 L,cm erg/sed| erg/sec.cm | © %.wrfsec‘J
- —3 .-
UV Leot 0,60 |1,76{1,2512,1-10° I,S-leh 3,540 12 2,2.10 10 i
V Pup [ 1,40 11,660,8 {1,2.10° 4. 100 2,340 1.4-10 10 !
i Boo | 0,268)1, 5lo,683.8-10t 1,110 17,1107 1,91 %
YY Eri] 0.3200,7610,.501 ,3.10 % 2,6.10 * 1,310 1 5,010 17 :
SW Lar | 0.32110.97]0,% 712,310 {, [ 10™ 1,7-1071 9,501 10 ,
W7 Sge81maxh,6 jo,0° H-M)“ILS-ﬂF“[ 31013 A4000 1
|
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Note: Commas represent decimal points.

According to estimates made by V. N. Mironovskiy [57], binaries of the
type WU Ma should yield the greater part of the flux density of gravitational
radiation of nonterrestrial origin; this value should be approximately
1072 erg/sec+cm?. The most probable period of rotation of these stars is
about 4 hours. Thus, if a gravitational radiation detector is created under
terrestrial conditions and is intended for the reception of radiation from
known binaries, it must be able to register at least intensity fluxes of
t ~ 1072-10710 erg/sec-cm?. Such an intensity flux, if it were electro-
magnetic radiation, could be detected without difficulty. However, as will
be shown below, the quadrupole nature of the detector makes this a very

difficult undertaking.

The radiation of gravitational waves leads to an energy loss of the

binary; as is known [54], this loss is equal to
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(without relativistic corrections). As a-result, the components of the
binary star should converge, and the frequency of rotation should increase.
During the time T the frequency of rotation w should change by the value Aw:
. .

S S @)
Table 4 gives the relative change in the frequency of rotation Aw/w, computed
using (8.6) for the same binary stars during the time T = 3-108 sec (about
10 years). The table shows that all six stars exhibit a change in the
frequency of rotation; this can be caused by gravitational radiation greater
than the relative frequency instability of modern atomic and molecular
frequency standards (for a hydrogen maser about 2+10712). It is interesting
to note that for most stars the rotation frequency is known with an accuracy
to the 8th decimal place, whereas the effect of gravitational radiation is
expressed, as is clear from the table, in the 9th or 10th place. Thus, a /91
possible indirect experiment which could confirm the existence of gravitational

radiation would involve the long-term observation of change in the period of

rotation of suitable binaries.

a Other phenomena can lead
ﬁ* to a change in the period of
{ rotation (for example,
expulsion of a large mass of
w0 matter from one of the binary
components); this makes
difficult the possibility of
observing the effect in pure

form.

The ntmber of binary

. O vz —

A N A A 2 A A . . .

AN AR A A A /{m)/m stars in which the change in
period of rotation due to the

Figure 21 radiation of gravitational
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waves theoretically can be detected using modern frequency standards is
rather great. Figure 21 shows the distribution of the number of known
eclipsing binaries as a function of the postulated change in the frequency of
rotation Aw/w for T = 3+108 sec. 1In determining this distribution data were
used for my, m, and Tpop LTOM the Kopal catalogue [56]. As can be seen from
the histogram, 8 eclipsing stars must change their frequency of rotation by

more than 1:107°, whereas 48 should change by more than 1-10711,

We note one interesting circumstance: in the compilation of Table 4
binary stars were selected which had relatively large m and small Tot” It
was found that among the known binaries there are none whose components have
masses of several solar masses and a period of rotation equal to or less than
the period of WZ Sge (81 minutes). If such binaries existed, as a result of
energy loss in gravitational radiation their lifetime as binaries would be
relatively short. 1In the case of the "unique' binary WZ Sge, the lifetime
hypothetically can be about 100 million years. Thus, the absence among known
binaries of those with large Aw/w can be regarded as some indirect confirm-

ation of the existence of gravitational radiation.

Hypothetical sources of gravitational radiation. The processes occurr-

ing during asymmetrical star collapse can lead to-powerful gravitational
radiation. As pointed out by Ya. B. Zel'dovich and I. D. Novikov [58], with
the falling of a body with the mass m onto a spherically symmetrically com-
pressing star with the mass M, whose radius is close to the gravitational

2

radius Pg = 2yM/e?, several percent of the energy mc? is transformed into a

burst of gravitational radiation, provided that m ~ M. The gravitational wave,
during movement along the radius of a star with M, has the form of a single

burst with the duration At ~ r /e; in the case of finite movement in an orbit
with a radius comparable with r , it has the form of a train of such bursts.
Each burst has an energy of ~ amzcz/Mg where o = 0.01-0.1., It is interesting
that in the case of finite movement of the mass m in the neighborhood of the
star M the total radiated energy in the form of gravitational waves is not
dependent on the ratio m/M. If such a source was situated at a distance of

L = 500 mps from the solar system, when m = my and ¥ = 102 my one could expect

near the earth a flux with the intensity
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if it is assumed that B = 1072. In this case the greater part of the emission
spectrum should lie near the frequency f = c/rg.= 103 cps. However, it is
unknown how frequently such processes transpire; therefore, if a detector was
created for the reception of radiation from such sources, it would be necess-

ary to plan on observations over a long period of time.

In the case of asymmetrical star collapse, intensive gravitational
radiation can occur due to other mechanisms (star rotation and oscillation).
According to estimates by I. S. Shklovskiy and N. S. Kardashev [59], made
on the basis of some model concepts of asymmetrical star collapse, it can be
expected that with a mass M = 104! g the intensity of gravitational radiation

would attain 10°%-1058 erg/sec, If such a source was situated at a distance

of 500 megaparsecs from the earth, a flux of gravitational radiation ¢ = 10-! --

--10*3 erg/sec-cm? could be expected from it near the frequency f =~ 107% cps.

Ya. B. Zel'dovich [60] feels that it is not impossible that pulsars are
also sources of gravitational radiation synchronous with the pulsation

frequency.

If so-called neutron stars do exist [61], which should have relatively
large masses (m ~ 0.5 ma) and small size (R ~ 16 km), double neutron stars
should also be a source of powerful gravitational radiation. According to
estimates made by Dyson [61], a double neutron star in the two seconds prior
to the merging of its two components emits ~ 1052 erg/sec with a frequency of
about 103 cps. If such a source is situated at a distance of 300 kps from the

earth, it can be computed that its flux intensity would be 103 erg/sec-cm?.

Gravitational radiation from the above-mentioned sources is caused by the
dissipation of energy, not by its transfer from one part of interacting masses
to another [54]. We note that these hypothetical sources of gravitational
radiation are not constant, and although they should give considerably greater
flux densities of gravitational radiation over a brief period than known

binaries, it is desirable in formulating a corresponding experiment to
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estimate how frequently such sources may be active. Such estimates have not

yet been made.

High frequency gravitational radiation of nonterrestrial origin. The

thermal motion of matter may be a possible source of gravitational radiation.
According to an estimate made by V. N. Mironovskiy [57], the intensity of
solar gravitational radiation is caused for the most part by bremsstrahlung
(gravitational radiation) during the Coulomb scattering of electrons and is
about 10!2 erg/sec. This flux intensity corresponds to several gravitons
(with a frequency approximately corresponding to the optical range) incident
on a square meter of the earth's surface per second. If we adhere to the
hypothesis of possible mutual transformations of ordinary matter and the
gravity field (D. D. Ivanenko, A. A. Sokolov [62]), we can estimate the
effective cross section of reactions at which the gravitational transmutations
of fermions occur [63, 64, 65]. However, the cross section of such reactions
is extremely small: according to an estimate made by G. M. Gandel'man and

V. S. Pinayev, the gravitational radiation during Coulomb scattering of
electrons is 10 orders of magnitude less than the radiation of neutrinos [66].
Accordingly, real experiments with this source of transformations have evi-

dently not yet been discussed.

We will mention still another possible mechanism which can give rise to
high-frequency gravitational radiation. During the propagation of electro-
magnetic radiation in a constant electric or magnetic field varying in time
with the frequency of the electromagnetic radiation, the components of the
eriergy-momentum tensor, in accordance with equation (8.1), should yield
gravitational radiation of the same frequency [67]. Since the propagation
velocities for both waves are identical, there should be a wave resonance of
gravitational and electromagnetic waves. In the absence of a constant field
there is no radiation of gravitational waves. The transformation efficiency
can be characterized by the ratio of the amplitudes of the gravitational
wave a(x) and of the electromagnetic wave b(x). Assuming that plane waves
are propagated in the direction & and interact during the time t, it can be /95

seen [67], that
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where PU is the strength of the permanent magnetic field. If it is assumed
that PV = 1075 oe, T = 3-108 sec and it is assumed that the total time for
movement of electromagnetic radiation from a remote cosmic source is 107

years, then |a(xz)/b(0)|2 = 10717, It is important that in this case we are
not involved with ''reddening' of all the photons entering into the electro-

magnetic wave, but with the transformation of a photon into a graviton.

under terrestrial conditions it is difficult to create a source of gravi-
tational radiation which could yield an intensity comparable with the
intensities from extraterrestrial relatively low-frequency sources (non-
stationary processes during star collapse and radiation of binary stars).
For example, if a rod with a mass m ~ 10" g is rotated at such a velocity
that the centripetal stress in it is close to the ultimate strength of the
best varieties of steels, the maximum intensity of gravitational radiation
which can be obtained with the corresponding form of rod is 10730 erg/sec

(about 10 gravitons per year).

Mechanical oscillations in solid bodies also lead to gravitational
radiation (Weber [68]). If longitudinal oscillations are excited in a rod
at the lowest of its characteristic frequencies, the intensity of gravi-

tational radiation can be computed using the formula

d° A6 YRS
T e (8.9)
which after simple transformations can be obtained from (8.2) (see [68]). In

formula (8.9) u is the density of matter in the rod, S is its cross section,

£ is the amplitude of linear expansion, v is the velocity of propagation of
longitudinal waves in the rod. According to Weber's estimates, under the best
conditions for u, S, £ and v one can count on a flux with the intensity 10713 /96

erg/sec; however, in this case it would be necessary to expend a power of

about 108 W on the excitation of mechanical oscillations.
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In explosions it is also possible to expect a burst of gravitational
radiation. Schuking (see the table in the book by Wheeler [69]) estimated
that during the explosion of a uranium bpmb (17 kilotons) the radiation

intensity is 10°"* erg/sec for a period of about 108 sec.

In summarizing these estimates for different possible types of sources of
gravitational radiation, in formulating corresponding experiments it

evidently is necessary to give preference to nonterrestrial forces.

We should again mention the proposals made by U. Kh. Kopvillem, et al.,
[70] that the collective oscillations of molecules with a high mass quadru-
pole moment, excited by synchronous electromagnetic radiation from a powerful
laser, be used for the radiation of gravitational waves (with a frequency
corresponding to the optical range). It is proposed that phonon counters for
these same molecules be used as a detector. The preliminary computations
made by U. Kh. Kopvillem, et al., show that with this approach as well there
are extremely great difficulties in implementing an experiment. Since these
proposals in their physical nature are beyond the scope of this book, we will

not discuss them in detail, but instead refer the reader to the literature.

Gravitational Radiation Quadrupole Detector

As already mentioned above, the gravitational radiation detector, like
the source, must be of the quadrupole type. In other words, in formulating
an experiment for the reception of gravitational radiation it is necessary to
have at least twp test masses. Since their specific gravitational charges are
identical (an identical ratio of gravitational to inert mass), the relative
movement of test masses will be caused only by the wave gradient. If the
distance between masses ° is small in comparison with the wavelength, and

their velocities are not too great (u/c¢ << 1), the difference in forces acting

on the two test masses in the gravitational wave field, according to Weber /97
[68], is
Fg“r o~ — melih, 1%
(8.10)
In formula (8.10) m is the magnitude of each of the test masses and RSQ are
0

the components of the Riemann curvature tensor. In electrodynamics the
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difference in the forces acting on two identical electric charges g spaced at
the distance 7 is

ak

Fes~ gL (8.11)

Expressions (8.10) and (8.11) are similar; the parameter Rgao is equivalent to

the field strength gradient.

If the registry of a sinusoidal electromagnetic wave
E == Jiysin (o4t — Kx)

is accomplished using two identical electric charges (with an identical
ratio q/min), from the difference in the forces FeZ acting on these charges,
knowing the frequency Wy the magnitude of the charge g and the distance
between charges ., it is also easy to compute the intensity of the electro-
magnetic radiation passing near these charges. In the expression for the
Poynting vector S = c(4n) ! x [EH] it is necessary to substitute FeZ from
(8.11) and use E = EO sin (wOT - kx). Then, for the intensity of the sinu-
soidal electromagnetic wave we obtain

g

|81~

h_ 4nq‘%o§? )

(8.12)

Formula (8.12) is correct if 7 << A and the velocities of charge motion are

small.

If similar calculations are made for the intensity % of gravitational

radiation, a similar expression can be derived

cB (l"'g‘]_.\‘z
“ | = 8:‘(’\,’/11.”1'3(03 ) (8.13)

Formula (8.13), like (8.12), was derived for a sinusoidal wave. As can be
seen from a comparison of formulas (8.12) and (8.13), they, like the formulas
for radiation intensity, coincide (with an accuracy to the numerical factor),

if in (8.13) m/y is replaced by g.
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Thus, gravitational radiation can be ''received" by any pair of test
masses if there is some device making it possible to register the small
difference in forces acting on these test masses present in the gravitational
wave field. As the pairs of such masses one can select: earth-satellite,
earth-star, two planets, two test masses in the laboratory and an extended
solid body in which the gravitational wave excites mechanical oscillations.
Such a detector, like the electric quadrupole, has its directional diagram

[68].

The formulation of an experiment for the reception of gravitational
radiation must evidently be discussed from two points of view. First, it is
necessary to determine the conditions under which the test masses must be
placed if the experiment is carried out in the laboratory. Second, it is
necessary to select a method for measuring small relative displacements

between the test masses caused by Egr ("instrumental" limitations).

Now we will consider the determination of conditions for formulating an
experiment. If there is an oscillator consisting of two identical point
nasses m which are connected to one another by a rigidity element X and an
element with friction A 7 the equation for the relative motion of these

mec.
masses under the influence of gravitational radiation will have the form

arg* dg¥ - e v
Mt B -+ K& = Flgp -+ 17, (8.14)
where F;Z is the sum of all fluctuation forces acting on the test masses in

the direction u.

In a case when the test masses are acted upon only by fluctuations of an
indicator with optimum tuning in accordance with the criteria set forth in
§ 4, it is possible to obtain analytical expressions for the values:

[Ru ] . and [¢]_. . 1In the case of an optical indicator, the absolute
0a0'min min

minimum detectable component of the Riemann curvature tensor is

/’l(u m;ﬁ_}? (8 . 15)

“R]minll’ﬁijl p-
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where 7 is the distance between the masses, £ is a factor of the order of
several units, dependent on the selected confidence limit of detection,
w;ech = K/m, A is a factor characterizing the statistics of fluctuations in
the indicator (for independently emitting photons A4 = 1). Expression (8.15)
is correct for a gravitational field sinusoidally changing with time (& is
the amplitude of change in one of the components) with the frequency C

and a train duration T; in this case T >> 1/w .+ Expression (8.15) follows

directly from (3.17) if in (3.17) [FO]min is replaced by (8.10). 1In
accordance with the derivation of (3.17) (see §5 3 and 4) the right-hand side
of (8.15) will be twice as great if the gravitational field changes in
impulses and the duration of the impulse % conforms to the condition

T << 1/wmech'

By transforming from components of the curvature tensor to the flux

density for gravitational radiation [57], we obtain the expression for

[t]min:
[Ehnine gt - =
min== eryn)m“h' T (8.16)

Expression (8.16) is correct for a sinusoidal wave. If the gravitational wave
has the form of a short impulse (T << 1/wﬁech)’ the right-hand side of (8.16)
is four times larger. Thus, (8.16) makes it possible to estimate the scales

of the experiment necessary for attaining the necessary response.

Substituting into (8.16) T = 10® sec, m = 2:10% g, Z = 10% cm, w,

1073 sec (which approximately corresponds to the period of rotation of

ech

intensively emitting binary stars, see above), £ = 2, we obtain [t]0 05
1.510"11 erg/sececm?. This value is approximately an order of magnitude less
than the radiation intensity for the binary star i Bootes which has the

"best' intensity (see Table 4).

Thus, we can draw the hypothetical conclusion that from the point of view
of the theoretically attainable response of a quadrupole detector, consisting
of a pair of test masses and an optimum indicator, the gravitational radiation

of close binaries can be detected. However, the cited numerical estimates
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show how close the limiting response is to the necessary level even in the
case of relatively large-scale experiments, and accordingly, how difficult
such an experiment is. Evidently, in terrestrial laboratories it is
impossible due to the high level of additional fluctuating effects. It is
clear that it is easier to attempt to discover the more intensive radiation
at higher frequencies from the hypothetical sources mentioned above, provided

that the bursts from them are sufficiently frequent.

If two very distant satellites are used as test bodies, the theoretically
possible response will be much greater (see expression (8.16)) and the
attainable response will be determined only by the current level of experi-

mental measurement techniques for small relative movements at great distances.

As an illustration of the experimental possibilities, we will examine
still another variant of such an experiment. Let us visualize that as test
masses we employ two heliocentric space stations separated by the distance
7 = 100 million km, and that a gravitational wave periodically changes the

distance between themn.

It is clear from what has been said above that if the mass of the
stations is about m = 10°% g, w = 1073 sec”! and T = 10% sec, the threshold
response for such a detector will be substantially lower, t = 1.10 10
erg/sec/cm2 (the flux density in the neighborhood of the solar system from the
star 1 Bootes, see Table 4). Accordingly, we will be concerned only with the
possibility of measuring small periodic velocities at such great distances,

and also the fluctuation effects on the space stations.

The amplitude of the periodic component of relative velocity Av of the

two stations, caused by the gravitational wave, is

8n
Av:-l]/c—.ft, (8.17)
This simple expression follows from (8.14), provided that the stations are /101

regarded as free masses. The latter is correct when the frequency of gravi-

tational radiation is much greater than the frequency of revolution in orbit.
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In the case of two heliocentric stations at a distance of 100 million km,
the gravitational radiation of the star i Bootes, in accordance with (8.17),
creates an amplitude of periodic change in relative velocity of Av = 2.5:10°
cm/sec. The measurement of such relative velocities is not difficult in the
laboratory for two closely spaced bodies. It is a substantially more complex
problem to measure the periodic components of relative velocities for bodies

separated by great distances.

We note that the already available method for measuring the velocities
of satellites at such distances makes it possible to measure the relative
velocities with a metrologic (absolute) accuracy of about 0.1 cm/sec (for
example, see data on Mariner IV [71]). Since the accuracy in measuring the
relative amplitude of a narrow-band signal (such as that of the gravitational
radiation of binary stars) is usually 6 or 7 orders of magnitude greater than
the accuracy in absolute measurements of this same parameter, even now,
with the already attained resolution, it would be possible to measure fluxes
of gravitational radiation at the level ¢ = 10 2— 10 "* erg/sec.cm?. Evidently,
there is no basis for assuming the attained accuracy in relative velocity

measurements to be the limit.

In summarizing these estimates, the hypothetical conclusion can be drawn
that in space there is real hope for obtaining an adequate response of
quadrupole detectors for discovering gravitational radiation from extra-
terrestrial sources. The problem of how great a fluctuation effect is exerted
by the solar wind and the magnetic field in the solar system on test bodies
requires additional experimental investigations. However, using already
available information on the physical properties of interplanetary plasma,
some preliminary estimates can be made. The amplitude of relative acceleration
of two heliocentric stations in a wave gravitational field of a star, in
accordance with the cited computations, is 2.5:10 '* cm/sec?. If we use the /102
data on the solar wind cited in the review, we can compute the acceleration
imparted to the station by the flow of solar plasma at distances of about
200 million km from the sun. If the '"cross section'" of the station is about

10% cm?, and its mass is 3+10° g, the acceleration falls in the range
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10712--10713 cm/sec2. Unfortunately, data on the spectral density of solar

wind fluctuations near a frequency w = 10 3 sec ! are presently unavailable.

We note in conclusion that massive planetary satellites also can create
variable accelerations (in the nonwave zone) of heliocentric stations with a
period equal to the period of satellite’revolution about the planet. If the
satellites of Mars have a mass of about 10%--1010 g, at a distance of 100
million km from Mars a heliocentric station will experience accelerations of
approximately identical amplitude caused by the satellites and the radiation
of i Bootes. However, with respect to the discovery of gravitation radiation,
this circumstance will not be important because the interference is determined

by phase and frequency.

Search for Gravitational Radiation of Extraterrestrial Origin

One of the few experimental teams working on the detection of gravi-
tational radiation is a group under Professor J. Weber (University of
Maryland). During 1959-1961, Professor Weber [68] (also see review [72]) made
a detailed analysis of the possibility of laboratory construction of a model
of a transmitter and detector of gravitational radiation based on the
mechanical oscillations of extended masses. His computations revealed that
the use of mechanical oscillations of extended masses leads to excessively
large experimental scales (large transmitter and detector masses, high powers
necessary for exciting oscillations in the transmitter, extremely long period
for discrimination of signal from noise). This team is now engaged in inten-
sive efforts to detect gravitational radiation of extraterrestrial origin from
some possible hypothetical sources which in theory can give a considerably
greater flux density of gravitational radiation near the earth than a labora-

tory source having any reasonable size.

In the first variant of the detector [73] developed by the team led by
Professor Weber, the extended body employed was an aluminum cylinder about
150 cm in length, about 60 cm in diameter, and with a mass of about 1.5 ton.
This cylinder (Figure 22) was suspended on thin filaments to a frame consist-
ing of steel blocks interlaid with rubber spacers (antiseismic filter). The

cylinder and frame were placed in a vacuum chamber and the entire apparatus
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' was placed outside the city limits, far from industrial interference. Only
the lowest-frequency quadrupole type of cylinder oscillations is used in
detecting gravitational radiation. Its frequency is wy = 10% rad/sec, and its
quality is @ = 10°; accordingly, from the entire possible spectrum of gravi-
tational waves the apparatus ''cuts out'" only a relatively narrow frequency

' band Aw = 0.1 rad/sec near wy = 10% rad/sec, provided the time for discrimi-
nating the order of the relaxation time for this type of oscillations is about

30 seconds.
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Figure 22

Quartz piezoelectric transducers, glued on the cylinder surface, make it
possible to convert the mechanical oscillations of the cylinder into an
electric signal. In removing the electric signal from the sensors, the
matching problem arises; this was rather complex: the impedance of the quart:z
piezoelectric transducers glued to the cylinder was relatively high (about
10° ohms). In order to solve the matching problem it was necessary to use a
superconductive inductance in the resonance preamplifier. As a result, the
response of the gravitational detector was limited only by the Brownian
oscillations of the aluminum cylinder. This means, for example, that the
minimum detectable amplitude of oscillations of the cylinder ends (during a

time approximately equal to the relaxation time) can be estimated from the

condition
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Mg 2 x . (8.18)

at room temperature V &2 2 2:10"'% cm, which with a cylinder length of 150 cm
corresponds to relative length changes (strain) of about 107 !6. We note that
such a device is in theory an instrument for measuring mechanical stresses,

not displacements. |

The calibration of the gravitational detector was accomplished both
using a standard noise source and directly by means of a dynamic gravitational
field. The latter calibration variant, carried out by Sinsky and Weber [74]
is essentially a high-frequency variant of the Cavendish experiment. The
dynamic gravitational field was created by the oscillations of a second
aluminum cylinder of somewhat smaller size at a distance of about 2 meters
from the main cylinder. The output power of the detector approximately
corresponded to the computed power, but the accuracy of such calibration was

low.

Both calibration methods revealed that the response corresponding to the
minimum detectable strain, computed using (8.18), was attained. The equiva-
lent 'gravitational' response can be determined using the expressions given
by Weber in [73], which relate the strains appearing in an elastic body with

the Riemann tensor component R causing acceleration of different parts

s
of the test body relative to oigggnother. In a case when the gravitational

field changes sinusoidally in time with a frequency coinciding with the

frequency of the lowest-frequency type of cylinder oscillations, and the /105
cylinder is oriented in the best possible way relative to RinO’ the relative

change in cylinder length is

2¢?

~ 29 5
B ol Rivjo: (8.19)
where ¢ is the velocity of light propagation, @ is the quality of the type of
oscillations. Substituting into (8.19) ¢ = 10 16, wy = 10* rad/sec, @ = 105,
we obtain RinO = 2.10 3% cm™2., This value corresponds to a flux density of
gravitational radiation £ = 210" erg/sec-cm?.
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other hand, such a variant
excludes, under terrestrial conditions, the possibility of using a coinci-
dences circuit. The most low-frequency quadrupole type of terrestrial
oscillations has a period of about 54 minutes and a quality about 400. A
highly sensitive gravimeter [75] (Figure 23) was created at this frequency;
it made it possible to register variations in the acceleration of gravity g
exceeding the level Ag/g = 10 11, The results of study of the earth's noise
background during the quietest period (in seismic respects) for the spectral
density of accelerations near the frequency w = 10"3 rad/sec gave
Tag@)T? = 6.9-10 1" gal?+sec/rad [75]. Comparison of this value with the
mathematical expression [75] relating TZE?BSTi'with the spectral density of
the Riemann tensor enabled Weber to decrease somewhat the estimate for the
upper boundary of the cosmic background of gravitational radiation (in the
region of frequencies w = 1073 rad/sec): [R(w)]Z < 6:10779 cm “-rad lesec;

the earlier estimate [68] was 3 or 4 orders of magnitude greater. The value

of this estimate is relative because its corresponding energy density near the

considered frequency must be £ = 10 erg/sec+.cm?, whereas binaries in this same

frequency range create a density of gravitational radiation ¢ = 107 9%--10"1!

erg/sececm? (see above).

This variant of a detector of the gravimetric type will undoubtedly become

more promising if it can be used in a coincidence circuit, for example,

having one detector each on the earth and on the moon, as is planned by
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the Maryland group in the next few years [75]. At the present time an
experiment with a coincidence circuit with detectors of the first type is

being conducted by Weber.

The idea of a coincidence circuit [76] involves the simultaneous use of
two detectors which are separated by some distance. This method makes it

possible to discriminate "gravitational bursts" against a background of

internal fluctuations. In actuality, in this circuit gravitational radiation
leads to correlated readings at the outputs of both systems (due to the large i
¢ the wavelength is also large), whereas internal thermal fluctuations cannot ;

have such a correlation. :

Detectors of the first type, placed in concrete chambers at a distance
103 km apart [76], were used in the experiment. One detector had the
parameters described above; the other was smaller (the length was the same,
but the diameter was about 20 cm) and was supplied with a somewhat different
electronic system, having a wider band, with a readjustable central frequency.
In addition, instruments were placed on the detector platforms for checking
the force effects of nongravitational nature; seismographs, magnetometers, /107
acoustic pickups, and tiltmeters were used. Figure 24 shows a block diagram of
the experimental outfit. The voltages from the piezoelectric transducers are
fed to threshold detectors which are triggered by signals exceeding a certain
level set by the expefimenter. The shaped pulses are fed to a coincidence
circuit; the latter produces a signal if the pulses arriving from both
channels coincide in time. The time resolution Tpes in the first experiments
was low, about 30 sec, but this was later brought to about 0.2 sec, i.e., the
pulses were detected by the circuit as coinciding pulses if their leading

edges were displaced in time by not more than Tpes = 0.2 sec.

Measurements with the coincidence circuit were made for several months.
Several cases were recorded of coincidences of pulses exceeding the threshold
level (approximately one per month). The threshold level was so much higher
than the mean noise level that the probability of random coincidences for some
cases was negligible (less than 0.0001). It is very important that according
to the author the cases of coincidences were not accompanied by correlated /108

bursts on the other control instruments. On the basis of the exceedingly
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small probability of random coincidences, Weber rejects purely statistical
reasons and feels that some rare synchronous effect was registered by the
detectors, which, generally speaking, can be caused by gravitational

radiation (!).

First detector Second detector

Amplifier | | Amplifier |

4 7 -

ThresholdJUL- "‘JU'Threshol v
detector _—l [_{detector
Recorder for

coinciding
pulses

Figure 24

In order to evaluate the results better, we will once again return to the
response of the Weber gravitational detector. We will examine a simplified
model of a gravitational quadrupole in the form of two spaced masses connected
by a spring. The relationship between RinO’ FU, t, etc. coincide in order
of magnitude with the similar relationships for the case of an extended mass,

differing only by insignificant factors.
The response of the Weber detector was limited by thermal fluctuations;
these are described by the Nyquist theorem:
Iy = 4sTHL],

where F%Z is the mean square fluctuation force, Af is the frequency band for
the receiver, H is the friction coefficient, related to the quality and masses
entering the detector: H = mwOQ'l. Substituting the fluctuation force

into (8.13), in place of Fgr we obtain an expression for the minimum flux
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tmin detectable under these conditions:

; o T Af
minT— 27 Q";qui:lluriquiv (8 B 20)

Taking into account the parameters of this outfit: Uy = 10* rad/sec, @ = 105,

- ] . N . 5 ) )
T = 300°K, equivalent mass mequiv 5+10° g and length Zequiv 104 cm, for
t . we obtain

min
b Gq0sAg - STE
e sec * cm2 (8.21)

The receiver band in the described experiment was entirely determined by the
coincidences circuit: different pulses shorter than 0.2 sec were not detected
by the circuit, and therefore the equivalent band was about 5 cps. Accord-
ingly, the absolute response was at the level t = 3:10% erg/sec:cm?. Taking /109
into account that correlated bursts were observed when the threshold level

was on the average approximately 10 times higher than the noise level, it must
be assumed that the bursts corresponded to a flux ¢ = 3+107 erg/sec-cm?

(Weber gives ¢ = 2+10% erg/sec-cm? [73], which corresponds to a threshold
response of a detector with a band Aw =~ 0.1 rad/sec, which in this experi-
mental system is not determining). A flux density ¢ = 3-107 erg/sece-cm? is

an extremely high value. Such a flux density for gravitational radiation at
the earth's surface could be only from extremely exotic sources, such as a
binary neutron star or an asymmetrically collapsing star [58, 61], situated

at a distance not exceeding 1,000 light years from the earth. These estimates
show that the response in the described gravitational detectors is substantial-

ly less than that which can be attained.

§ 9. Gravitatjonal Relativistic Effects in the Nonwave Zone

The desirability of carrying out relativistic gravitational experiments
in the nonwave zone is beyond question. However, with respect to obtaining
new physical information these experiments are evidently less interesting than
attempts to detect gravitational radiation of extraterrestrial origin, which,
in additipn to revealing the existence of this radiation, would provide a new

source of astrophysical information.
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Gravitational effects in the nonwave zone can be classified somewhat
schematically into three groups: effécts of interaction between electro-
magnetic radiation and the gravity field, nonlinear interaction of gravi-
tational masses, and gffects caused by the relative motion of gravitational
masses. The execution of experiments pertaining to the first group of
effects involves a method which is beyona the scope of this monograph.
Further details concerning proposed and actually implemented experiments
related to the first group bf effects can be found in the review [77]. The
detection of effects from the other two groups can be reduced to fhe detection
of small forces or moments of forces acting on test bodies. Below we give
estimates of the magnitudes of these effects and discuyss the possibility of
their observation from the point of view of limiting relationships in the

optimum strategy of measurements described in Chapter II.

an}in§g§‘interag;ionsrpf g?avitational masses. A characteristic

property of the Einstein equations is their nonlinearity. Even in the
approximation of a weak field, the Lagrange function for »n gravitating masses

[54] contains a term describing the nonlinear interaction

Yo nym,
Alnonlin™ 2‘2‘ : >,.~|,. b”r 1 (9.1)

G

where y is the gravitational constant, ¢ is the speed of light.

Using these expressions, it is easy to estimate the change in the

attraction of the mass my to the earth's mass M if there is still another

12 from m

mass m, at a distance »r

2 1

AF ~ Yim AL qmuon g
nonlin™ " ¢Zry BF “Z?rlé'

(9.2)
In formula (9.2) g is the acceleration due to free fall (in a linear approxi-
mation) at a distance R from the center of the earth. If it is.assumed

that m, =m = 10 cm, then AF = 3.5-10—19 dyne. Using the

1 2 12 nonlin
limiting formula for the minimum detectable force (3.17) with the optimum

= 10% g, r

strategy of measurements for m, = 10% and assuming in (3.17) the oscillator
1 g g

strength in which m, enters to be equal to Woooh = 1073 sec’!, we find that

1
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the necessary time T for detection of AFno is T = 3+10° sec. We note

niin

that the ratio of the force AFnonZin to the force of Newtonian attraction under

these conditions is an extremely small value

nonlin gre 17
—poin o £~ 1107,

This means that when carrying out an experiment in which an attempt is

made to detect AF .y
nonlin

) must be extremely high. If we compare this estimate /111

the level of compensation for parasitic effects
(relative to AFﬁonZin
with that given in § 8 for an optimum detector, designed for the reception of
radiation from close binaries, it can be concluded that in the case of small
experimental scales it is approximately as difficult to detect the nonlinear

interaction of three masses as it is to detect gravitational radiation.

Relativistic gravitational interaction of moving masses. The relativ-

istic gravitational interaction of moving masses is similar to the inter-
action of moving electric charges (interaction of currents)}. This inter-

action is sometimes called prorotational. The addition Aﬁbrorot to Newtonian

attraction between two disks with the masses my and My s caused by their

rotation, is

Tmyn re”
AF proror = = 5 (9.3)

12

The ratio AT prorot ro? r?
L) e emim s e e ™/ m— ~

' (4 [t
New

with v = 3-10% cm/sec is equal in order of magnitude to 1-10712, i.e., is

substantially greater than AFnonZin

simpler to detect this effect than to detect the nonlinear interaction of

/FNew° Accordingly, it is considerably

gravitational masses. Schiff, Everitt and Fairbank are now carrying out an
experiment [78, 79] in which the observation of the discussed effect is
reduced to the observation of precession for a gyroscope installed on an

artificial earth satellite. If the satellite orbit is 800 km from the earth's
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surface and in a polar orbit, as a result of satellite orbital motion its
axis will be displaced by 7 seconds of angle each year, and due to the
earth's rotation, by an additional 0.05 second of angle each year. The
difficulties in executing this experiment are reduced essentially to creating
a sufficiently stable indicator for the rotation of the gyroscope axis which
would make it possible to implement remote measurements with an accuracy to

about 0.01 second of angle each year (or 0.001 second of angle per month).

It is interesting to note that this effect (after its discovery and /112
"mastery') must be taken into account in creating highly precise space
navigation systems.

§ 10. Experiments With Test Bodies and Search for New Properties of
Elementary Particles

Most detectors for individual nuclear reactions and detectors for high-
energy elementary particles are, to use the expression employed by D. I.

Blokhintsev in [30], 'virtually unstable systems'.

In § 4 we already pointed out that macroscopic oscillators with a small
friction coefficient also can be employed in registering high-energy elementary
particles. In this section we will briefly discuss an evaluation of the
theoretically attainable response in two recently proposed macroscopic
experiments: an experiment for the detection of the electric dipole moment of
electrons and an experiment for detecting rare relict quarks with whole

electric charges.

Macroscopic experiments for determining the dipole moment of an electron.

The problem of the presence of electric dipole moments in elementary particles
has recently acquired a timely nature due to the discovery of an apparent
departure from T-invariance in some processes of the decay of neutral

K-mesons (see review [80]).

It follows from various theoretical premises that the electric dipole
moment of an electron d_ falls in the range d = 10723-10725 e+cm (where e is
the electron charge). V. K. Ignatovich [81] (see also the review [80]) pro-
posed a macroscopic experiment for detecting the electric dipole moment of

atoms. The electric dipole moments of atoms in a nonrelativistic
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approximation (Schiff [82]) are equal to zero when the electrons have

electric dipole moments. However, relativistic effects must lead to an
intensification of the electric dipole moments (Sandars [83]). For example,
for alkali atoms in the lower part of the Mendeleyev table of elements, the
effective dipole moment of an atom deff must exceed by 2 orders of magnitude /113
the dipole moment of an electron de‘ V. K. Ignatovich has proposed that
déf7.be determined by magnetizing to saturation a nonconducting ferromagnetic
substance with the number »n of atoms in a unit volume. The atomic spins in
this case will be completely oriented and if the electrons of these atoms have
electric dipole moments there will be polarization of the electric sample

P = ndeff‘ This polarization corresponds to an electric field strength

E = 47Pc !, where ¢ is the dielectric constant of the medium. It is possible
to determine deff by measuring the strength E of this field. When deff =
10721 e-cm, n = 1022 cm™3, ¢ = 2, the electric field strength arising due to

such electric dipole moments will be E, v 1075 Ve-cm.

Now we will estimate the theoretically attainable response in such an
experiment from the point of view of the limitations set forth in Chapter II.
We will assume that the sample of ferromagnetic material has the configuration
of a sphere with the density p and the radius R. If the sphere is suspended
on a fine filament in such a way that the magnetic field direction is perpen-
dicular to the filament, and in addition to the magnetic field there is a
superposed electric field EO perpendicular to the magnetic field and filament,
the sphere will be acted upon by the moment of forces Mom F, which can swing
such a torsional oscillator. The moment of forces can vary in rhythm with the
oscillator oscillations, changing either the electric E or magnetic field.

The amplitude of the moment of forces is

{Mow F7] o> —/;— a lPnd g Ty,

where EO is the amplitude of the superposed external electric field. If it is
assumed that we can reduce the friction in the filament (in the suspension)
to such a value at which the minimum torque is determined by the fluctuation

effect in the optical indicator of small angular rotations, then
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Expression (10.1) follows from formula (3.25), in which the [Mom F] value has
been substituted in place of the minimum detectable moment of forces. On the
right-hand side of (10.1) 7 is a numerical factor of the order of several
units, determined by the selected level of detection reliability, % is the
duration of the sinusoidal train during which the oscillator sways, 7 is the
Planck constant, W ool is the frequency of torsional oscillations, I is the
moment of inertia of the suspended sample, A' is a numerical factor character-
izing the statistics of fluctuations in the optical source present in the
indicator of torsional oscillations (for independently emitting photons Al =
1). Expression (10.1), like (3.25), is correct in the case of an optimum

measurement strategy.

If we substitute into (10.1) R = 1 cm, n = 1022 cm 3, Ey = 102 CGSE,
=2, T = 10" sec, W ool 1072 sec”™!, A’ = 10 and I = 8 g+cm? (which corres-
ponds to p = 5 geem ), we obtain

(10.2)
[deff Imin~2-2-10"3% . em ~ 1,2- 1071 CGSE.

If it is taken into account that the real attainable response in experi-
ments with test bodies is approximately 7 orders of magnitude poorer, the
value entirely attainable with present-day experimental equipment is

deff

attained at the present time in other methods (see review [80]).

© 2410725 e+cm. This is approximately 2 orders of magnitude better than

charges. Following formulation of the hypothesis by Gell-Mann and Zweig
[43, 44] concerning the existence of quarks, whose electric charge should be
+ 1/3 and * 2/3 the charge of an electron, several competing hypotheses

appeared in which it was postulated that quarks should have a whole (relative

to the electron) electric charge.
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According to one of these hypotheses (A. D. Sakharov [84]), relict
quarks are accumulated at the center of massive stars and planets, experienc-
ing only elastic scattering on the nuclei; their iemperature corresponds to
the temperature of the ambient medium (a thermalization of the quarks should
occur). Their thermal distribution by density from the center of stars and
planets to the periphery should lead to the following: near the surface there
should be a nonzero quark concentration n . Near the earth's surface #_ can /115
fall in the range from 1 cm 3 to 106 cm_3?'the cross section of elastic
scattering for such quarks on nuclei should be about 10-25 cm? and the mass

should be about 13 proton masses [84].

A. D. Sakharov proposed a macroscopic experiment for finding such
relict quarks under terrestrial laboratory conditions. The essence of this
experiment was as follows: a massive torsional pendulum with axial symmetry
on a torsion suspension is surrounded by a coaxially thick-walled cylinder
which can be brought into rotation. The dimensions of the pendulum and the
thickness of the cylinder are such that quarks incident on the pendulum,
passing through the cylinder and pendulum, experience at least one collision.
Thus, the cylinder rotation modulates the thermal velocities of quarks and
imparts a torque to the pendulum. Swaying the cylinder first in one direction
and then in the other, the pendulum can sway in rhythm. It is easy to
estimate the amplitude of the torque [Mom F} which can be obtained in such an

experiment:

[Mov Fl v vy20 % V—l.'_f-;._'/-"/;,-,. (10.3)

Here in (10.3) UO is the amplitude of the rate of cylinder rotation,
R is the pendulum radius, equal to its height, « is the Boltzmann constant,
m_ is proton mass (the quark mass is m_ = 13 mp). The R value must be
sufficiently large in order that there will be an average of one quark
collision with the pendulum nuclei. It is possible to avoid entrainment of
the pendulum by the gas during cylinder rotation if they are separated by a

fixed barrier which is quite thin and transparent for the thermal flux of

quarks.
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By equating (10.3) to the amplitude of the minimum detectable moment of
forces (3.25) with an optimum measurement strategy, it is possible to estimate
the threshold value nq which in theory can be detected in such an experi-
ment. Assuming in (10.3) that R = 30 cm, v, = 3+103 cm/sec, T = 300°K and
assuming in (3.25) that w = 1072 sec™!, T = 10" sec, ¢ = 2, A’ = 10, we
obtain n_ = 2+10"% cm™3, provided that the density of pendulum material is
assumed to be p = 5 g/cm3. Since the real response in experiments with test
bodies is approximately 7 orders of magnitude poorer, under present-day
laboratory conditions it would be possible to expect a response in such an /116

~

experiment with a corresponding concentration nq = 103 cm™3,

As in the case with the electric dipole moment of electrons, we will not
discuss the detailed requirements for equipment in such experiments and will

not examine the necessary control experiments, since this is beyond the scope

of this book.

Summarizing the material examined in Chapter IV, it can be concluded that
experiments with test bodies unquestionably have substantial advantages in a
great number of investigations. The author has not attempted to cover all
possible fields of applicability of experiments in which the detection of a
physical effect is essentially reduced to the detection of a small force or
moment of forces. The examples given in Chapter IV should instead be
regarded as illustrations and evaluations of the attainable response in those

experiments in which fundamental physical problems can be solved.
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APPENDIX /117

§ 11. Methods for Measuring Small Mechanical Oscillations

Radio engineering methods. Radio engineering methods, making it possible
to measure small mechanical displacements and mechanical oscillations, are
very readily employable under ordinary iaboratoiy conditions and make it
possible to obtain a high response. When measuring small quasistatic dis-
placements with capacitive transducers it is possible to register displace-
ments of Az = 10 2 cm [85]; measurement of small mechanical oscillations of
sonic frequencies, also by capacitive transducers, makes possible the
reliable discrimination of an amplitude of oscillations Ty = 610713 cm for a
time of signal discrimination from noise of about 200 sec. It is clear that
the limiting response in measuring quasistatic displacements is determined
for the most part by the extent to which it is possible during the experiment
to thermostabilize the instrumentation, and especially the mechanical objects
whose relative displacement is under investigation. Me&surement of variable
mechanical displacements is more interesting from the point of view of

applying these methods in experiments with test bodies.

The most sensitive among the various radio engineering devices for
transforming mechanical movements into electric signals are so-called
capacitive transducers. The plates of an electric capacitor, the change in
distance d between which should be measured, together with an inductance, form
an electric circuit. This circuit either is included in a radio-frequency
oscillator, or electric oscillations are excited in the circuit by a supple-
mentary self-excited oscillator. With a change in d, in the first case there /118
is a change in the frequency of the generator; in the second case there is a
change in the amplitude of the oscillations in the circuit (in this case the
frequency of the self-excited oscillator is usually tuned on the "slope'" of

the resonance curve). Simple radio engineering devices register these changes.

The possibilities of a method are limited primarily by the frequency and
amplitude fluctuations of the self-excited oscillator. The amplitude

fluctuations can be considerably attenuated (for example, see [86]). 1In
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registering the changes in distance between the plates x(t) it is necessary
that the change in the characteristic frequency of the circuit §f caused by
this displacement be greater than the fluctuation drift of the generator
frequency!:

8 = afo 252 >tV WNBT. a1y

In this expression o < 0.5 (for real circuits, having a stray capacitance

a = 0.3-0.4), W({f) is the spectral density of frequency deviations for the
self-excited oscillator, Af is the frequency band characteristic for x(t), and
z is a value of about several units, determined by the selected level of
detection reliability. If it is assumed that the width of the self-excited
cscillator line determines only the shot effect, by using known expressions
for W(f) (for example, see [87]), we can obtain an estimate for the minimum

detectable x(t) value:

(%) = LA™t (el AF (2N 1], (11.2)

where Iy is the constant component of the plate current in the tube, e is
the electron charge, » is the resistance in the oscillator circuit, N is the

oscillator power.

Now we will estimate the minimum distinguishable displacement x(t) for
some specific values of the parameters entering into (11.2). Assume g = 2
(for the reliability level about 0.95), r = 10 3 ohm (for 'superconductive"
alloys at the temperature of liquid helium T = 4°K and at a frequency fo =
105 cps [88]), d = 1072 em, I, = 10 % a, ¥ = 10°% W, e = 1.6+10 }° Coulomb.
Then

0

(1))  ~3.6-10°3 VA7,
[z( ),0.95 } V' Af.cm

! Here we assume that the Af band is sufficiently small so that W(f) does not
change significantly within Af.
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The cited estimate for [.'Jc(r)]o.95 should evidently not be regarded as
the limiting value. If it is possible to use one oscillator for exciting
oscillations in two circuits, and the distance between the plates changes in
only one of them, by using the ordinary compensation method it is possible to
reduce the [.7(:(1)]0.95 value by a factor 10--10"%(this is the usual figure for
circuits with compensation). In this case it will be both frequency and
amplitude fluctuations which are compensated. In this type of instrumentation
the level of detectable x(t) can be affected by incoherent thermal oscil-
lations in the circuit. At the end of this section we will return to the
problem of the possibility of a substantial narrowing of the natural line
width of the source of radio-frequency oscillations and the role of incoherent

thermal fluctuations in circuits.

We note that in the discussed method a substantial role is played by
instrument noise; this noise determines the lower limit of measured
fluctuations in frequency deviation and accordingly, small mechanical dis-
placements. However, the level of instrument noise is also dependent on the
"refinement' of the experiment (on the extent to which it has been possible
to reduce the flicker effect, microphone noise, noise level of mixers, etc.),
whereas fluctuations in oscillator frequency caused by the shot effect are
essentially unexcludable. The effect of amplitude fluctuations is less than
the influence of frequency fluctuations; this is easily confirmed by using

known expressions for the amplitude fluctuations of a self-excited oscillator.

Figure 25 shows the results of measurements of small amplitudes of

oscillations of a tuning fork at a frequency of 15 cps produced by means of

a capacitive transducer [89]. The transducer had a compensation circuit with
a compensation factor 8 = 1-1072. Each point on the graph corresponds to a
discrimination time of about 20 sec. The amplitudes of the oscillations were
plotted along the x-axis, whereas the galvanometer readings at the transducer
output were plotted along the y-axis. The amplitudes of the oscillations
were determined (calibrated) using the known mechanical parameters of the

tuning fork and the known force applied to the tuning fork (for further
details see [89]).

106

/-

.20



Now we will briefly discuss the
possibilities of increasing the
resolution of this method. We note
that the real time during which a
self-excited oscillator is necessary
for the capacitive transducer does
not exceed 106--105 sec under ordinary
physical conditions. This means that

a standard oscillator theoretically

Galvanometer readings, D

could be interchangeable with a

Vi DS SV Y N T, . . .
42-107% g™ trw” linear electric oscillatory system
Amplitude of oscillations, cm with a time constant t*2 107 sec.
With such a source of oscilla-
Figure 25 tions the line width would be de-

termined only by thermal fluctuations.
However, in the best present-day quartz resonators in the radio-frequency range
the attenuation constant is several seconds [90]. A massive rotating rotor,
suspended in a vacuum by means of a so-called magnetic suspension, can be used
as a linear system with large t*. Under such conditions the rotation of the
rotor is slowed due to slight friction caused by rarified gas surrounding the
rotor. For example, in the Beams ultracentrifuge [91], suspended in a
magnetic field in a vacuum (7 = 300 °K, p = 10" ® mm Hg), the steel rotor
(m = 13 kg) was slowed, losing about 10 rpm/day (i.e., during t* =~ 10° sec)
in rotation frequency, provided it was imparted a rotation frequency of about
2 x 10" rpm. Such a rotor, together with a rotation frequency detector (for
example, optical or capacitive), can be useéd as a source of radio-frequency
or sonic signals. The maximum frequency of rotor rotation is determined by
the ultimate strength of the material from which the rotor is fabricated and
can attain fb = 10% cps [91]. The slight frequency drift of such an apparatus
is easily compensated by small energy pumping (for example, by means of light
pressure); using well-known automatic frequency control methods it is possible
to stabilize the mean frequency of rotor rotation using a stable self-

exciting oscillator.
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It is easy to compute the spectral density of rotor rotation frequency
deviation caused by fluctuations of gas molecule pressure on the rotor.
Assuming that the rotor has the form of a cylinder with an altitude and
radius equal to a and a mass m, for the spectral density of rotation frequency

deviation (without allowance for frequency drift) we obtain

D@ BoR"? (wT) "%
Mot ()= I VIR () mQ2 o 123l nat] (11.3)

Here D(Q) is the spectral density of fluctuations of the pressure moment on
the rotor, 7 is the rotor moment of inertia, Hw is the rotor friction
coefficient for rotational movement, u is the mass of a gas molecule, # is
the concentration of gas molecules, « is the Boltzmann constant; § is
reckoned in rad/sec from the rotor frequency of rotation Zﬂfb. Expression
(11.3) was obtained under the following assumptions: a) 2wafb << (KT/U)I/Z,
where fb is the mean frequency of rotation; b) © is less than the lowest
characteristic frequency of rotor mechanical oscillations; c¢) QT >> 1. Since
T << T* = I/Hw and we are interested in such frequencies for which QT >> 1,
in the considered example we see a random process with a stationary increment
[92]. Accordingly, expression (11.3), strictly speaking, is a Fourier
transform of the structural function, which, as is well known, coincides with

the usual spectral density of a stationary process, provided Q1 >> 1.

The expression for Wrot (®) differs in structure from the expression for
the spectral density of frequency deviation for a tube generator. The
greater the © and m values, the smaller is the T value and the better is the
vacuum (i.e., the lesser the n value), the lesser is the Wfot (2) value.
Thus, the level of experimental equipment will determine the line width of
this signal source. If in (11.3) we substitute u = 2.7-10_23g, T = 300°K, /122
a=3cm, n=2.71010 ecm 3 (i.e., with p = 107 mm Hg), @ = 60 rad/sec,

m = 6102 g. then Woop (2 = 1.5-10728 rad/sec. For a tube generator with
fb = 10" cps (i.e., approximately with the same frequency as for the rotor in
the preceding estimate), I, = 1073 @, » = 1 ohm and v, = 1072 W, we obtain
W%'O.(Q) = 1.3-10 10 rad/sec (where the subscript t.o. refers to the tube

oscillator). Thus, at least under the described conditions the difference
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between Erot (2) and W%.o' (R) is 18 orders of magnitude. In this estimate
for Wfot (R) smaller n and 7T values were not used because the Wfot () can
increase the fluctuations caused by viscous magnetic friction in the suspen-
sion. Simple computations on the basis of data in [91] reveal that at least
when p = 1076 mm Hg and T = 300°K the magnetic suspension does not intro-

duce any substantial additional attenuation into the torsional motion in
comparison with the friction caused by the residual gas pressure. Accordingly,
on the basis of the generalized Nyquist theorem it can be concluded that the
estimate given above for Wrot (Q) is correct. There is still another
mechanism for the increase in the fluctuation frequency deviation of rotor
rotation caused by its own characteristic mechanical thermal oscillations.
Simple computations, which we will not present here, show that the contri-
bution of thermal oscillations to the W}ot (2) value, estimated using

expression (11.3), is insignificant.

In summarizing these considerations, it can evidently be asserted that
a considerable attenuation of the effect of source frequency fluctuations on
resolution can be achieved either by replacing the radio-frequency self-
excited oscillator by a device similar to that described above, or by
increasing the degree of compensation. If it is assumed that by the use of
such methods it is possible to eliminate completely the effect of source
frequency fluctuations on resolution, the latter can be determined only by
the presence of incoherent thermal electric oscillations in the circuits.
The minimum oscillations which can be resolved in this case, are determined

using the simple expression

d T AT
[£(¥)]min= § all V[“d raf, (11.4)

where, as in (11.2), o £ 0.5, £ is a dimensionless factor of the order of /123
several units, »r is the resistance of the circuit in which the sensor

capacitance is included, x is the Boltzmann constant, T is the circuit

temperature, U, is the amplitude of the electric voltage in the circuit, Af

is the frequency band characteristic for x(t). Assuming Un/d = 10% V/cm

{which is admissible if there is a sufficiently high vacuum between the
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sensor capacitor plates), T = 4°K, » = 10”3 ohm, z = 2, o = 0.5, we obtain
[x(r)]o 95 = 1.8+10° 17 /Af cm. We note that if it is possible to make long-

term measurements and Af << f , in expressions (11.3) and (11.4) it is

mean
necessary to replace Af by VAf/t, where T is the time expended in signal

discrimination. There is also some change in the dimensionless factor ¢ (for
example, see [101}). The latter estimate for [x(r)]o gg must evidently be
regarded as limiting for radio engineering methods for measuring small

mechanical oscillations.

Optical methods. In various modifications there are two principal

optical methods for detecting small mechanical displacements or oscillations.
In the first method (it is sometimes called the '"knife and slit'" method or
optical lever method [13, 14]) the optical image of one diffraction grating,
obtained using an objective, is matched with a second grating having the same
interval. The displacement of one of these gratings parallel to the other
catises a modulation of the light flux passing through the two gratings. This
modulation can be registered by a photodetector. The lesser the grating
interval, the more intense is the modulation for the same displacement. If
it is assumed that the grating interval is of the order of the wavelength,
the light flux fluctuations are caused only by the independence of emission
of photons from the source, and the quantum yield of the photodetector is
close to unity, the minimum displacement [x(T)]min which can be registered by

such a device is determined from the condition

[r('t)]m1r / _/w.,
e Sy el

orTr

‘ B STiee
[2 (7)) min=x Lho ‘/TV? Af = ""° (11.5)

where 4 is the Planck constant, NO is the intensity of the light flux after the
second diffration grating, Af is the frequency band characteristic for x(7),
A. and v, are the wave length and the emission frequency respectively, 7 is a

0 0
dimensionless factor of the order of several units, dependent on the selected
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level of detection reliability. If it is assumed that ¢ = 2, AO = 5+10° 5 cm,
Ny = 10® erg/sec, then x (t) = 1.7-10 13 VAf cm. The minimum quasistatic
displacement which Jones could register by this method was several units times
10712 cm [14]. The entire mechanical part of the optical system was thermo-

stabilized to about 1+10°© °C.

In place of two diffraction gratings, in order to obtain an intense
modulation of the light flux it is possible to use an optical knife which
covers the light flux near the focal spot of the optical objective. If
aberrations are eliminated in the objective, and the light source gives a
plane monochromatic wave, the distribution of intensity of optical radiation
near the objective focus is determined only by wave diffraction in the
objective aperture. Using known expressions for the light wave field near
a focal spot [93], it is easy to compute the minimum displacement x(t1) of the

optical knife which can be detected:

L Shive A L 2Neho A 4
2(0)~0.28 L2, )/ Teas —0.20 L)/ Bba g, (11.6)

where L is the objective focal length, a is the diameter of the objective

entrance aperture. As can be seen from a comparison of (11.5) and (11.6),

the basic characteristic determining the minimum detectable displacements is

the spectral density of fluctuation modulation of the light flux intensity

M;. In deriving expressions (11.5) and (11.6) it was assumed that the

emission of individual photons from the source occurs independently, and

therefore /125

2’('\’0

2
Mj= 5—. (11.7)

Evidently, until now it has not been possible to create a source of optical
radiation with a M? value less than (11.7). However, there are no theoretical
limitations on decreasing the M% value with this same flux intensity NO.

Using nonlinear optical systems!, it is evidently possible ‘to obtain a

1 For example, systems similar to parametric dampers in the radio-frequency
range [86].
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substammtial decrease in the M% value, ard accordingly decrease the minimum
detectable displacements by means of this method. We will return to the

problem of the possibilities of decreasing M% later in this chapter.

The second optical method for measuring small mechanical displacements
imvelves the registry, by means of a photodetector, of changes in the light
flux passing through an interferometer during the movement of its mirrors.
Using the Michelson interferometer, employing a mercury tube as the source of
ewe of the spectral lines, I. L. Bershteyn [94] succeeded in registering
escillations of mirrors at a sonic frequency with an amplitude of about 10 !!
em. Javan [15] feels that by attaining frequency stability of helium-neon gas
lasers it will be possible to use a Fabry-Perot resonator to register
relative displacements of its mirrors of the order of several units per

16713 cm.

We will examine the limiting sensitivity of this method using the example
ef a Fabry-Perot resonator. We will assume that the emission from a laser
with the power N0 and the frequency Vo> operating in a single-mode regime,
excites optical oscillations in the Fabry-Perot resonator in the fundamental
mode. A photodetector with a quantum yield close to unity registers the
medulation of the laser light flux passing through the resonator. Such
resenators, in whose mirrors multilayer dielectric coatings are used, have an
extremely high quality /126

g Qav__ 1
0. - _res _ _T'res

“opt  Dvpes TR (11.8)

where . is the distance between the mirrors, ¢ is the speed of light, R is the
coefficient of reflection from the mirror. Present-ddy multilayer coatings
make it possible to obtain R = 0.995, and accordingly the Qopt value attains
1810, We will assume that the resonator is detuned relative to the laser
frequency by the value vres/zgopt' In this case one attains a nearly maximum
intewsity medulatioh for a light flux passing through the resonator

with a small relative displacement of the mirrors. If we use known expres-

siems for the shape of the resonance curve for such a resonator (for example,
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see [95]), it is possible to compute the relative change in light flux
intensity at the resonator odutput Mi(r) caused by the displacement x(t) of
one mirror relative to the other!:

2az (T)
A—Rh (11.9)

Moy =
We will assume that the laser frequency does not fluctuate, but the fluctu-
ations of laser intensity are the same as for a light source from which tHe
photon yield is independent. Then the detection condition x(t) has the

simple form:

ﬂfx () = g ]’//‘IfAf

Hence, using (11.7), we obtain
. . A=) vy
[#()min= & gy 2‘]/ NJ'Af' (11.10)

where, as before, z denotes a dimensionless factor of the order of several

units, dependent on the selected level of detection reliability. As can be

seen from a comparison of (11.5), (11.6) with (11.10), the increase in

resolution for the second method in comparison with the first is approximately /127
(1 - B! times.

Now we will take into account fluctuations in laser frequency which

also lead to a fluctuation modulation of the light flux amplitude at the

! Expression (11.9) for M&(T), derived on the assumption that the resonator

is detuned relative to the laser frequency by Vyos

, which is obtained with a somewhat

/onpt’ gives a value
approximately 20% less than [Mi(r)]max
different detuning.
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resonator output. For this purpose we use an approximate expression for the

spectral density of laser frequency deviation [95]1:

W(f)= St (B Ve (A;:ess’ﬁét_)i. (11.11)
Modulation of the characteristic frequency of the Fabry-Perot resonator,
caused by displacement of the mirrors Av = 2(t)/1, should be

VaY
mod “resonat
greater than VW(f)Af/vO. Therefore

= (11.12)

T L =1 ==
L )]rnm Vresonat Vo
Using (11.11), as well as the condition v = vy, , we obtain
resonat 0
YELTIN
[z (V)fmin= E(1 — 7)o ]/ TV, A7 (11.13)

Expressions (11.13) and (11.10) differ only in the factor v2m. Assuming
z =2, R=0.995, ¥
7+10716 VAF cm.

= 6 = - -5 i ~
10° erg/sec, o 510 ® cm, we obtain [x(T)]O‘QS

0
In the derivation of (11.13) and (11.10) approximate expressions were
used for W(f) and M% for a source with fluctuations independent of the

emitting photons.

I. L. Bershteyn, I. A. Andronova and Yu. A. Zaytsev demonstrated in [25]
that in deriving an expression for M% for a laser it is necessary to take
into account the rigidity of the limiting cycle, as well as the nonlinear and
dispersion properties of the active medium in the laser. Taking into account

the rigidity of the limiting cycle, the expression for M% for a laser has the /128

1 Formula (11.11) is an approximate expression for the natural line width
Avnat of an optical self-excited oscillator. V. S. Troitskiy demon-

strated in [96] that the natural line width of a self-excited oscillator

Avnat = W(0). Accordingly, (11.11) is correct only for low frequencies.
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following form [25]:

2 2hvy (AYresonat®
Mi(f)~ N TN (11.14)

where p2 is the rigidity of the limiting cycle, f is the frequency, reckoned

from v,. In modern optical oscillators Av = 105 cps, and p = 105 cps.

0 resonat
Accordingly, the experimentally observed M% values at low frequencies are
approximately two orders of magnitude greater than for a source with
independent fluctuations [24]. This means that the minimum detectable
mechanical displacements will be somewhat greater than the estimates which

can be obtained using (11.13) and (11.10).

It can be seen from (11.14) that if it is possible to create a resonator
with Av < p, it will be possible to have a source in which the
resonat
intensity fluctuations are less than in a source with an independent emission
of photons. A similar theoretical possibility also exists with respect to

the W(f) value (for further details see [25]).

As can be seen from the above, optical methods for measuring small
mechanical displacements have a high resolution which is essentially dependent
on the properties of the emission sources. It evidently is impossible to
assert, as in the case of radio engineering methods for measuring small
displacements, that in the already performed experiments a real limit of

resolution of these methods has been attained.

§ 12. Mechanical Fluctuations in a Space Laboratory

On the basis of the available, quite extensive experimental data, ob-
tained using already launched space stations, we can obtain approximate
estimates which make it possible to judge to what degree it is possible to
approach the theoretically attainable response in an optimum measurement
strategy (see Chapter I) when formulating experiments with test bodies. The
vacuum in a space laboratory, assuming an adequate distance from the earth,
is much better than that which is usually attained in a terrestrial labora- /129
tory. The friction coefficient Hgas corresponding to this vacuum, even for

small test bodies, is quite small, and when carrying out an experiment with
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a test body under such conditions it is already possible to require the use
of a small displacements detector (optical or electronic) which

has optimum tuniné. Accordingly, in this section we will be concerned only
with the fluctuations of the center of mass of a space laboratory, equivalent
to the seismic oscillations of a terrestrial laboratory. Such fluctuations
can be caused by fluctuations in pressure of the solar wind, fluctuations in
the magnetic field, micrometeorites, or movements of another space laboratory.
It is convenient to compare the accelerations of the center of mass of a
space laboratory caused by different fluctuation factors and the theoretically
measurable periodic acceleration under optimum strategy conditions. This
comparison will be given below for specific parameters in a hypothetical

experiment with a test body.

Fluctuations of solar wind pressure. At the present time complete

information is unavailable concerning the spectrum of solar wind fluctuations.
Rather detailed information is available concerning the diurnal and hourly
variations in solar wind intensity (see review [97]), but for higher frequen-
cies of variations no measurements have yet been made. Below we will give
three estimates, making it possible to compare the accelerations imparted by
the solar wind to a space station and the periodic accelerations of a

mechanical oscillator detectable when optimum strategy is employed.

The solar wind pressure 6 at the distance of one astronomical unit from
the sun (in "quiet weather') is about 4°:107° dyne/cm? [98]. This means that
a space station with the mass ¥ = 107 g and the cross section $§ = 105 cm? is
4.10 11

14

accelerated by the solar wind with a mean acceleration r = 8S/M

cm/sec 2.

We will assume that aboard the space station an experiment is carried out
for detecting the periodic acceleration of the mass m of a mechanical
oscillator having the frequency wg - It follows from formula (3.17) that the
minimum detectable amplitude of acceleration with the frequency W during the
time T is

B3 (12.1)
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If A =10, T = 103 sec, wy = 1 sec’, m = 102 g, then [F/m] . = 2:107}7
cmesec 2. This value must be compared with the mean square fluctuation
acceleration /(?)iAf, caused by solar pressure in the frequency band

Af =1/7:

0‘5‘

4/ 2 m,zu;f
V (rAf = V Tt (12.2)

where v is the velocity of solar wind particles, mp is proton mass.

Expression (12.2) is correct if the impacts of protons against the
outside of the space station are considered uncorrelated. Assuming in
(12.2) that v = 3-107 cmesec”! and Af = 1073 sec™!, we obtain /(ﬁ)iAf =
6-10"!° cmesec 2, i.e., one and one-half orders of magnitude less than
(F/m], ;00
obtained from (12.1) and (12.2) are comparable since in (12.1) [F/m]

decreases as T !, whereas in (12.2) /(ﬁ)iAf decreases as (1) 172,

in the estimate given above. With an increase in T the estimates

min

Thus, the hypothetical conclusion can be drawn that in the case of not
excessively great durations 7 it is possible to attain the maximum response
in experiments with test bodies without using any special screens for

decreasing the fluctuations of solar wind pressure on a space station,

Magnetic field in circumsolar space. The measurements made on helio-

centric stations revealed that far from the earth, at a distance of about

one astronomical unit from the sun, the magnetic field is 107 %-10"> oe and its
variations with approximately the same amplitude have characteristic periods
of about 1 hour (i.e., grad B = 10 1%-10715 oe/cm) [98]. A nonmagnetic space

station in a uniform magnetic field has the acceleration

! ~ % 28
[-'lemag-_'—ﬁ_ﬁ or (12.3)
where x is the mean permeability, p is the mean station density. The
acceleration is [FVm]mag = 3+1072% cmesec 2, provided that x = 1075, p = 3
gecm 3, As can be seen from a comparison of this estimate [F/m]mag and the
above-cited value [F/m]min = 2410717 cmesec™2, in some hypothetical experi-

ment with a test body, in the case of a nonmagnetic station the possible

117



accelerations caused by magnetic field fluctuations in space can be neglected.
However, the existence of ferromagnetic parts in the station can greatly

increase [F/m]mag'

meteorites. 1In order to use an expression similar to (12.2) in computing the

mean square acceleration /(F)iAf of the center of mass of a space station
caused by multiple impacts of micrometeorites, it is necessary to take into
account from the entire spectrum of micrometeorites only those which during
the time T impact on the station a sufficiently great number of times.
Micrometeorites with the mass m = 10 1! g collide with a station with the
area S = 10 m? on an average of five times during T = 103 sec; if the mass is
m = 10712 g, the average is 50 times, whereas if the mass is m = 10710 g the

possibility of such a collision is about 0.5.

The expression for shot fluctuations in the acceleration of a space

station center of mass, similar to (12.2), has the form

TGS (2.

Vi~V —2

where M is station mass, ?2 = ﬁi©i5 is the mean pressure exerted on one side
of the station by micrometeorites having the mass m, and the collision cross
section @i. In (12.4) summation by meteorite masses must be limited by the
condition S@iT >> 1. More infrequent impacts of more massive meteorites
naturally also make a contribution to the fluctuation acceleration of the
space station center of mass. However, rare strong acceleration bursts can
be registered separately, using for this purpose instruments designed for
registering micrometeorites, and then their influence on the motion of the
test body can be taken into account. The contribution to acceleration by
frequent impacts of small meteorites is evidently considerably more difficult
to take into account. If we employ the summarized data on e, and %i given
in [99, 100], then for %i = 103 sec and § = 10 m?2 we find that the maximum

%i at which it is possible to use (12.4) is about 1-10711¢ g. Assuming in
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(12.4) that M = 107 g, v = 30 km/sec, and using the data on Qi and &i from
[100], with Af = 1073 sec™! we obtain a value /(ﬁ)iAf > 4410715 cm/sec?. This
is more than two orders of magnitude greater than the value [F/m]min = 2010717
cm/sec? obtained under the conditions described above. Thus, the fluctu-
ations in micrometeorite pressure make it difficult to attain the maximum
sensitivity if experiments are carried out with test bodies on a space

station.

A possible solution of this problem involves the use of an anti-
meteorite screen surrounding the station. In this case an effect of micro-
meteorites on the test body will be exerted only through a variable gravity
field which appears as a result of oscillations of the screen from meteorite
impacts. Such a screen can be designed similar to antiseismic filters which

are employed in terrestrial laboratories,

In conclusion, we will cite still another numerical estimate character-
izing the conditions necessary for attaining a response corresponding to the
above-mentioned estimate for [F/m]min‘ If the information on acceleration of
a test body in one space station is transmitted to another space station, it
is necessary to take into account the acceleration experienced by the first
station in the gravity field of the second. We will assume that the second
station also has the mass M = 107 g and the test body m, is displaced
relative to the center of mass of the first station by 1 m. Then the con-
stant acceleration experienced by the test body relative to the center of
mass of the first space station (this acceleration also will be registered
by a small oscillations detector) will be about 1:107 17 cm-sec~2, provided

the stations are 10 km apart.
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